

EXHIBIT B

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 1 of 92

c12) United States Patent
Klein

(54) DISTRIBUTED COMPUTER ARCHITECTURE
AND PROCESS FOR VIRTUAL COPYING

(76) Inventor: Laurence C. Klein, 1010 Wayne Ave.,
Silver Spring, MD (US) 20910

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 964 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 10/874,172

(22) Filed: Jun. 24, 2004

Related U.S. Application Data

(63) Continuation of application No. 09/438,300, filed on
Nov. 12, 1999, now Pat. No. 6,771,381.

(60) Provisional application No. 60/108,798, filed on Nov.
13, 1998.

(51) Int. Cl.
G06F 3112
G06F 15/00

(2006.01)
(2006.01)

(52) U.S. Cl. 358/1.15; 358/1.1
(58) Field of Classification Search 358/1.1,

358/1.6, 1.13, 1.15, 1.16, 402, 403, 407,
358/425, 1.18, 1.2, 1.3, 1.4, 1.5, 1.7, 1.8,

358/1.9, 1.11, 1.12, 1.14, 1.17, 468; 710/8,
710/14,15,33,62, 63,64,65, 72,73

See application file for complete search history.

111111 111
US007477410Bl

(10) Patent No.: US 7,477,410 Bl
(45) Date of Patent: *Jan. 13,2009

(56) References Cited

U.S. PATENT DOCUMENTS

5,303,336 A * 4/1994 Kageyama et a!. 358/1.15

5,666,495 A * 9/1997 Yeh 710/303

5,689,625 A * 1111997 Austin eta!. 358/1.15

5,754,747 A * 5/1998 Reilly eta!. 358/1.15

5,761,396 A * 6/1998 Austin eta!. 358/1.15

6,401,150 B1* 6/2002 Reilly 710/104

* cited by examiner

Primary Examiner-Dov Popovici
(7 4) Attorney, Agent, or Firm-Thomas, Kay den,
Horstemeyer & Risley LLP

(57) ABSTRACT

A computer data management system is capable of transmit
ting one or more of an electronic image, electronic graphics
and electronic document to external destinations including
one or more of external devices and applications. The com
puter data management system includes at least one memory
storing a plurality of interface protocols for interfacing and
communicating and at least one processor. The processor is
responsively connectable to the memory, and implements the
interface protocols as a software application for interfacing
and communicating with the plurality of external destina
tions, including external devices and applications.

47 Claims, 44 Drawing Sheets

192a

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 2 of 92

U.S. Patent Jan.13,2009 Sheet 1 of 44 US 7,477,410 Bl

IDGH-LEVEL DEVELOPER (VB, JAVA, DELPID, ETC.) r-4

COMPUTER ARClllTECTURE 2

CORE TECHNOLOGY (ENGINES) r- 6

FIG. 1

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 3 of 92

U.S. Patent Jan. 13, 2009 Sheet 2 of 44 US 7,477,410 Bl

COMPONENT INTERFACE r--- 8
h

COMPONENT FACTORY r-- 10

Jll

'C'-LEVELAPI r--- 12

FIG. 2

COMPONENT INTERFACE 8

OBJECT MANAGER 14

000

16 18 20

FIG. 3

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 4 of 92

U.S. Patent Jan.13,2009 Sheet 3 of 44

OBJECT

LAYER 3 ·ENGINE FUNCTIONS

FIG. 4 LAYER 2 '"ENGINE CONFIGURATION

LAYER 1 -ENGINE MANAGEMENT

t
ORGINAL 'C'- LEVEL API

OBJECT MANAGER

FIG. 5
000

16 18 20

OBJECT MANAGER

I
ENGINEOBJECTCOMPONENT

LAYER 3 -ENGINE FUNCTIONS

FIG. 6 LAYER 2 -ENGINE CONFIGURATION

LAYER 1 -ENGINE MANAGEMENT

US 7,477,410 Bl

-- 16,18,20

22 !"-

!"-24

1--26

r-- 12

14

r-- 14

r-- 16,18,20

22 1--

r- 24

1-- 26

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 5 of 92

U.S. Patent Jan.13,2009 Sheet 4 of 44 US 7,477,410 Bl

UEn~e~anagennent
Interface

Arguments Description

ActivateEngine BOOL Activate Activates or d~activa~s an engine_. This
ititerf~ce element \Vill causeJm ¢ngine to
load itSelfto or unload itself-front memory.

lsEngineActivated Determine whether the engine has been
successfully loaded into memory.

FIG. 7

IEn~e~anagement
Interrace

Argunnents Description

SetSetting DWORD Setting Sets the setting Setting to a value of Value.
VARIANT Value the Setting argunnent 1s a unigue nunnber

that represents a specific setting type. The
Value argument is a union argument type
that can accept any style argument,
including an array of elements.

GetSetting DWORD Settinfu gets the settin§ Setting and places the value
VARIANT*Va ue m Value. the etting argument is a unique

number that represents a s~cific setting
type. The Value argunnent is a union
argument type that can accept any style
argument, mcluding an array of elements.

FIG. 10

llSngine~anageDlent
Interrace

Arguments Description

Funeti· PWORI):Setting Initiate. the ~ction" as t~resente& bfe on
VARIANT* ~e;;:;n:~:=g~~~:ea::;. number Value ·

FIG. 12

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 6 of 92

U.S. Patent Jan.13,2009 Sheet 5 of 44 US 7,477,410 Bl

ENGINE MANAGEMENT- LAYER I -...._ 26

LOAD I UNLOAD ENGINE (FILE 1) / I'- 1 24

DYNAMIC LINKING ENGINE FUNCTION CALLS / r--- 1 26

(FILE 2)

INITIALIZE ENGINE SETIINGS v "-- 128
(FILE 3)

FIG. 8

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 7 of 92

U.S. Patent Jan.13,2009 Sheet 6 of 44 US 7,477,410 Bl

130 136 140
I I l

FILE 1 FILE2 FILE3

ENGINE FUNCTION A ENGINEDLLA ENGINE SE'ITING A

ENGINE FUNCTION B ENGINEDLLB ENGINE SEITING B

ENGINE FUNCTION C ENGINEDLLC ENGINE SE'ITING C

• • •
• • • • • •

I I I

(((
132 138 142

FIG. 9

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 8 of 92

U.S. Patent Jan.13,2009 Sheet 7 of 44

ENGINE CONFIGURATION- LAYER 2

SET SETTING

GET SETTING

LOAD SETTING

SAVE SETTING

IS SETTING VALID

DEFAULT SETTING

PROMPT SETTING

FIG. 11

US 7,477,410 Bl

r-

, r--

,. -
~

--r-

'I--

--r--

.-r--

24

144

146

148

150

152

154

156

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 9 of 92

U.S. Patent Jan.13,2009 Sheet 8 of 44 US 7,477,410 Bl

ENGINEFUCTION -LAYER 3 ------ 22

PERFORM FUNCTION
.. - 158

r-- 160
GET FUNCTION RESULTS

CLEAR FUNCTION RESULTS
.. _

162

EVENT FEEDBACK
.-r-- 164

FIG. 13

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 10 of 92

U.S. Patent Jan. 13, 2009 Sheet 9 of 44 US 7,477,410 Bl

_j8

42\ [J

I

76, 78- ~ 44---~
46~- -

50
J \

~ lt::::J~n\, I

FIG. 14

40 58) '-.IKEYBOARDII MOUSE 1__., 48
I I DISPLAY _.-'

\
CPU INTERFACE I 72

~ _.-'

56 54 DISPLAY

\
INTERFACE

I

50 52

64 I (6o (62 I
DISK ~- IRoMI I RAM I COMMUNICATIONS

CONTROLLER PORT
I

'--74 HARD CD ROM DRIVE~ INFRARED INFRARED
RECEIVER TRANSMITi'ER

(68 (OPTIONAL) (OPTIONAL)
FLOPPY

66 DRIVE_.._ _\ _\
70 78 76

FIG. 15

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 11 of 92

U.S. Patent Jan.13,2009 Sheet 10 of 44 US 7,477,410 Bl

40 58~ '--I KEYBOARD I MOUSE I __.; 48
DISPLAY __.;

\ I I
CPU INTERFACE I 72

~ DISPLAY
_...-/

56 54 INTERFACE
\ I

50 52

64 I £6o (62 I
DISK ...-/- I ROM I I RAM I COMMUNICATIONS

CONTROLLER PORT
I I

'---74
lcnRoMI HARD RADIO RADIO

DRIVE RECEIVER TRANSMITIER
(68 (OPTIONAL) (OPTIONAL)

FLOPPY
66 DRIVE ~ _\ _\

70 82 80

FIG. 16

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 12 of 92

U.S. Patent Jan.13,2009 Sheet 11 of 44 US 7,477,410 Bl

r

I
v

!-

-- -
-

' ~ 84
_./

' ~

FIG. 17

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 13 of 92

U.S. Patent Jan.13,2009 Sheet 12 of 44 US 7,477,410 Bl

-
110-L--- (5 -10%)

108-L----

VISUALJNTERFACE
(CORBANBX/OCXIPOWER BUILDER/ DELPlll)

WINDOWS MANAGER (MFC)

J OBJECT MANAGER
106

104 -

102 -

100 -

r 122
LEVEL3

VISUAL 120
LEVEL2 CLASSES

118
LEVELl

r' 116
LEVEL3

C++ 114

CLASSES LEVEL2

112
LEVELl

TECHNOLOGY
CATEGORIES

UNDERLYING
ENGINES

•WINDOWS •WINDOWS
REPRESENTATION REPRESENTATION

•WINDOWS •WINDOWS
ERROR MANAGER ERROR MANAGER

•BRIDGE •BRIDGE

• SUPPLEMENTARY • SUPPLEMENTARY
DIALOGS DIALOGS

• CONSISTENT •CONSISTENT
OBJECf INTERFACE OBJECT INTERFACE

•BRIDGE •BRIDGE
• ENGINE FILL- IN • ENGINE FILL- IN

• PROTECTION • PROTECTION
• ERROR MANAGER • ERROR MANAGER
• ADMINISTRATION • ADMINISTRATION

I
SCAN II WAGE WANill

KOFAX, XIONICS,
SEAPORT, TWAIN

PIXEL TRANSLATIONS

SEQUOIA, TIS,
CLEAR IMAGE,

SEAPORT

FIG. 18

•WINDOWS
REPRESENTATION

•WINDOWS
ERROR MANAGER

•BRIDGE

• SUPPLEMENTARY
DIALOGS

• CONSISTENT
OBJECf INTERFACE

•BRIDGE
• ENGINE FILL- IN

• PROTECTION
• ERROR MANAGER
• ADMINISTRATION

II OCR I
XEROX, CAERE,

CALERA, NESTOR,
I PRIME REcOGNITION,
: UGATURE, MITEK
I

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 14 of 92

U.S. Patent Jan.13,2009 Sheet 13 of 44 US 7,477,410 Bl

OBJECT MANAGER 14

166

ENGINE OBJECT COMPONENT 16,18,20

FIG. 19

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 15 of 92

U.S. Patent Jan.13,2009 Sheet 14 of 44 US 7,477,410 Bl

186
(

MACHINE I CLIENT

OBJECT
MANAGER

LAYER

172
(

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECT
• CORE TECHNOLOGY

SERVER/LAN

SERVER/LAN

MACHINE/
CLIENT

ENGINE
OBJECT
LAYER

OBJECT
MANAGER

LAYER

FIG. 20

180

CORE TECHNOLOGY
ENGINE OBJECT

COMPONENT

176

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 16 of 92

U.S. Patent Jan.13,2009 Sheet 15 of 44 US 7,477,410 Bl

OBJECT MANAGER 14

168

ENGINE OBJECT COMPONENT 16,18,20

FIG. 21

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 17 of 92

U.S. Patent Jan.13,2009

BROWSER/
TillN CLIENT

186

OBJECT
MANAGER

LAYER

172
(

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECf
• CORE TECHNOLOGY

Sheet 16 of 44 US 7,477,410 Bl

WEB SERVER

BROWSER/
THIN CLIENT

ENGINE
OBJECT
LAYER

OBJECT
MANAGER

LAYER

184
(

180

CORE TECHNOLOGY
ENGINE OBJECT

COMPONENT

176a

FIG. 22

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 18 of 92

U.S. Patent

0
C'l

If

1\

~~
~

-

~
~

Cillffi
~--

L-..-

I--

~I{]
~

Jan.13,2009 Sheet 17 of 44

(

~

.-----
1--

1--

-

-

~~
Yl+ l _....

~·~~~

~ ' /_ \

y
(

US 7,477,410 Bl

v-
;-- -\0

--~--~ ~ _
<D

0
C\1

~
8!.

-
r-

~---~ ~L..---- N
0
"0
c
3:
ii:
fj
0

(f.)

L-

-

' --~
~
=a
E
0

9
(/)

~ 'I!
~
(J)

i!
E
~

~ 9."..
(..)

--~f.- --.;::!;
N

'---

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 19 of 92

U.S. Patent Jan. 13, 2009 Sheet 18 of 44 US 7,477,410 Bl

(

l (~~OD~ODD~O= oo
D tJ r-

D b ~
D Ill tJ ~
D ~ ~
D b ~
0

II

D
D Ill
D L--------l

0 II ~~~·~
D I IU.. I .
D ~·r r·r
D Ill ., " ~

0~~7=~ y~ ~
D t
g ~ ~ ~1..------------1
g II g [~][dllffi][f{j I
D D

0 0 ~l§]~ g Ill g 117ilff7il

g w g Jfullfu :
I I

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 20 of 92

Open Document

Oose Document

Zoom In

Zoom Out

Print Document

Print Image

Annotation
Tool Bar

210"-... u db AdVM.J.ced
-Function

Tool Bar

Change View

Exit

r Annotations Toolbar I 11 I Scale: n/a I

20011

214" FIG. 23C

~208"

Text
Image -Htt-212"

Page: n/a

204" 202"

~
00
•
~
~
~
~ = ~

~
~

:=
(.H
~

N
0
0
\0

rFJ

=('D

a
\0
0
.j;o.
.j;o.

d
rJl
-....l
~
-....l
-....l
~

""""' = = """"'

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 21 of 92

U.S. Patent Jan.13,2009 Sheet 20 of 44 US 7,477,410 Bl

VIEWER PROCESS 188

OBJECT MANAGER 14

166

ENGINE OBJECT COMPONENT 16,18,20

FIG. 24

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 22 of 92

U.S. Patent Jan.13,2009 Sheet 21 of 44 US 7,477,410 Bl

SERVER/LAN

VIEWER
PROCESS

MAClllNE I CLIENT SERVER/LAN

196 172

VIEWER
PROCESS

186

OBJECT
MANAGER

LAYER

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECT
• CORE TECHNOLOGY

VIEWER
PROCESS

194

MACHINE/
CLIENT

OBJECT
MANAGER

LAYER

VIEWER
PR.OCESS

FIG. 25

192

180

CORE TECHNOLOGY
ENGINE OBJECT

COMPONENT

190

176

178

~

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 23 of 92

U.S. Patent Jan.13,2009 Sheet 22 of 44 US 7,477,410 Bl

VIEWER PROCESS 188

OBJECT MANAGER 14

LAN/INTRANET, INTERNET, WEB 168

ENGINE OBJECT COMPONENT 16,18,20

FIG. 26

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 24 of 92

U.S. Patent

196a

VIEWER
PROCESS

186

Jan.13,2009

BROWSER/
THIN CLIENT

172

OBJECT
MANAGER

LAYER

(

MACHINE I CLIENT

• OBJECT MANAGER
• ENGINE OBJECT
• CORE 1ECHNOLOGY

VIEWER
PROCESS

194a

Sheet 23 of 44

174a

BROWSER/
THIN CLIENT

US 7,477,410 Bl

190a

VIEWER
PROCESS

178
(

180

OBJECT
MANAGER

LAYER

CORE TECHNOLOGY I
ENGINE OBJECT

COMPONENT

VIEWER
PROCESS

192a

FIG. 27

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 25 of 92

U.S. Patent Jan.13,2009

.-,: ..
. ·.: . . _

· ... -.

"'· ·•.

. ,'· : .. · :•..
. · ... · ... · ... ···•·· PRINT8~;

Sheet 24 of 44 US 7,477,410 Bl

FIG. 28

. ·.·.· .. ·:

. · _:·. :

. . . .
:-_·_:.. . :::

MUL TI-F.l)NCTIONAL
PERIPHERAL(Ii.e. FAX) .

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 26 of 92

U.S. Patent Jan.13,2009 Sheet 25 of 44 US 7,477,410 Bl

Virtual Copier bi\QI[R}

TIIBCOMPANY UMITED
lnstantVC

-- -- [J[:Jb:JbJ[:J ------
- PowerVC

from:! O~en File l:iiJioptions ... 1

Io: I Virtual Co~ier liJIIoptions ... 1

~ -- c=:) -

Status

[E)~~ ~[~]~)[5@][0] 0
Virtual Copy Ready

rocument Information
Page 1 of 6 I

FIG. 29

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 27 of 92

U.S. Patent Jan. 13, 2009 Sheet 26 of 44 US 7,477,410 Bl

PowerVC---------------------
From:l Open File [Y]I Options .. .

To:__V_irt_ua_l C_o-=-p_ie_r ---==[Y]::=.I Options .. .

go

FIG. 30

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 28 of 92

U.S. Patent Jan. 13,2009 Sheet 27 of 44 US 7,477,410 Bl

CLIENT

D

INPUT \=/ SERVER \=/ OUTPUT

PROCESS PROCESS PROCESS

FIG. 31

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 29 of 92

U.S. Patent Jan. 13, 2009 Sheet 28 of 44 US 7,477,410 Bl

Virtual Copier
End User Application

3rd Party App

Input

Output

FIG. 32

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 30 of 92

U.S. Patent Jan. 13,2009 Sheet 29 of 44

3rd Party Application

Virtual Copier Server
Module

FIG. 33

US 7,477,410 Bl

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 31 of 92

U.S. Patent Jan. 13, 2009 Sheet 30 of 44 US 7,477,410 Bl

Start Copy

Initiate InputL__ ~ Update Client
Module

\..

Initiate Process
Module

\..

)

Update Client

Initiate Output ~update Client
Module

FIG. 34

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 32 of 92

U.S. Patent Jan.13,2009 Sheet 31 of 44 US 7,477,410 Bl

VC Server

f- Modules 1--- Go to r-- Status

Program - r---- Cancel Error '-----

- VDocument '--- Reset ()

Collection
I Property II.___ _M_e_t_h_od___.ll '---_E_ve_n_t___.

FIG. 35

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 33 of 92

U.S. Patent Jan.13,2009 Sheet 32 of 44 US 7,477,410 Bl

Modules

t--
InputModules

f--
CopierModule Name

I--

ID -- OutputModules
'----- Default

1--
File

'--- ProcessModules

Configure

i I--

Collections of Load
CopierModule objects, of 1---

types lnputModule,
OutputModule, and Unload
ProcessModule -
respectively

IsLoaded ()
-

1---
SavesettingsAs
Default ()

L__
ResetSettings ()

Collection I Property I I Method I Event

FIG. 36

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 34 of 92

U.S. Patent Jan.13,2009 Sheet 33 of 44 US 7,477,410 Bl

Program

InputModule ,___
1-- Name

- OutputModule IP
f--- 1--

- ProcessModules ProcessModule - File

Configure ()
-

Collection I Property I Method I Event

FIG. 37

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 35 of 92

U.S. Patent

Disk files of
actual
images

I

VDocument
internal
layout

Jan.13,2009

File A
3 Pages

Sheet 34 of 44

FileB
1 Page File C

3 Pages

FIG. 38

US 7,477,410 Bl

FileD
1 Page

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 36 of 92

U.S. Patent Jan.l3,2009 Sheet 35 of 44 US 7,477,410 Bl

VDocument

f-- VPages VPage File

1---- Auto Delete
1-

Add__ Page

Clear Remove ..__ L-._

I Object I Collection I Property I Method I Event

FIG. 39

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 37 of 92

U.S. Patent Jan.l3,2009 Sheet 36 of 44 US 7,477,410 Bl

Error

1---
ModuleiD

1-
SubModuleiD

ErrorCode r-

1----
ErrorText

1---
Severity

URL
L-

Collection I Property I Method I Event

FIG. 40

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 38 of 92

U.S. Patent Jan.13,2009 Sheet 37 of 44 US 7,477,410 Bl

Status

r-- ModuleiD

1--
SubModuleiD

- StatusType

1--
StatusNumber

1--
StatusText

URL
1--

1--
Infol

,____ lnfo2

I Object I I CoUediou I Property I I Method I EJ
FIG. 41

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 39 of 92

U.S. Patent Jan.13,2009 Sheet 38 of 44 US 7,477,410 Bl

lao I Server Module Events Generated by Server

l..._l __.. Start virtual copy operation (Go) 1-" vseProgramStart l

• I Load·-IOP M~dules ~ vseModuleLoadSt'art I
vseModtileLoadEnd I ..,.

I Execute lOP ~odules ~ vseModuleGoStart l
I (vseModuleCanceled) I
I (vseProgramCanceled) I
I vseModuleGoEnd I lr ..

I End virtual copy operation (Go) vseProgramEnd l

• vseModuleUnloadStart ·1 I Unload lOP Modules J+,
I .& ~·I vseModuleUnloadEnd I
t

FIG. 42

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 40 of 92

U.S. Patent Jan.13,2009 Sheet 39 of 44 US 7,477,410 Bl

Client Module Server Module

Initiate Server COM Interface
Module

~
Present available Modules Object

modules

+ + ... Select modules Program Object
to use

+ ..
Start a virtual copy ... Go() Method

~.
Process Server Status & Error

feedback Events

J

FIG. 43

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 41 of 92

U.S. Patent Jan.13,2009 Sheet 40 of 44 US 7,477,410 Bl

lOP Module

¢= Application Manager Class

Server Module
6vents

!Status () I
~

Event Manager Class

~
11.1

~ ,. .0: > ~ ,.
~ :.. ~ 7 ..: 7

Panel Manager Document Layout Manager
Server Module Class Navigation Class Class

Methods

t=J I
~

I

_..,/1
~ .,

v ~ v v

"~

I Object I Collection I Property I I Method I B
The Client Module has a fixed set of features that it needs to perform:

FIG. 44

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 42 of 92

U.S. Patent Jan.13,2009 Sheet 41 of 44 US 7,477,410 Bl

IPOModule Feedback

-----1 Configure ()

-----1 Go (VDocument Feedback)
1 -----1 Error I

-----1 ResetSettings ()
y Status I

SaveSettingsAsDefault ()
~

I.__ _o_bJ_·e_ct __ _.ll Collection I Property I Method I Event

FIG. 45

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 43 of 92

U.S. Patent Jan.13,2009 Sheet 42 of 44 US 7,477,410 Bl

Error

r-- SubModule

r-- ErrorCode

r-- ErrorText

- Severity

URL -

Cancel
'----

Collection I Property I Method I Event

FIG. 46

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 44 of 92

U.S. Patent Jan.13,2009 Sheet 43 of 44 US 7,477,410 Bl

Status

f--
SubModuleiD

f--
StatusType

t---
StatusNumber

~
StatusText

- URL

Infol -

I--
Info2

.___ Cancel

I Object I Collection I Property I I Mefuod I EJ
FIG. 47

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 45 of 92

U.S. Patent Jan.13,2009 Sheet 44 of 44 US 7,477,410 Bl

Server Module lOP Module
Server Module Interface to lOP Interface Class

I Go (VOocument Feedback) I I I Feedback

I Configure () I n ~ ..
I ResetSettings ()

I
.;7

Executive Class Configuration Class
I SaveSettingsAsDefault () I

I Go (VDocument) j I Configure () J
[ResetSettings (~

I SaveSettings... I

I Object I Collection I Property I ~ I Event I

FIG. 48

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 46 of 92

US 7,477,410 Bl
1

DISTRIBUTED COMPUTER ARCHITECTURE
AND PROCESS FOR VIRTUAL COPYING

RELATED APPLICATION

This application is a continuation of U.S. patent applica
tion Ser. No. 09/438,300, filed Nov. 12, 1999, now U.S. Pat.
No. 6,771,381 which claims priority to U.S. Provisional
Application 60/108,798, filed Nov. 13, 1998, both of which
are incorporated herein by reference.

This application is related to, a continuation-in-part appli
cation of, and claims priority to, the following non-provi
sional applications:

Ser. No. 08/950,838, filed Oct. 15, 1997, now U.S. Pat. No.
6,185,590;

2
Additionally, every API manages errors differently further

complicating the problems described above. Some APis
return a consistent error code for each function. Error man
agement in this case is very organized and manageable. Other
APis return error codes as one of the parameters passed to the
function. There are APis that mix the choice of error manage
ment and have some functions return an error code while
other functions pass the error code as a parameter of a func
tion. Errors can also be managed by a callback function,

10 eliminating the need for passing any error code as part of the
function. In some instances of a poorly implemented API the
errors are not passed back at all.

Every engine, such as a text retrieval or an OCR (Optical
Character Recognition) engine, has a unique interface. This

15 interface is generally a "C" -level API (Application Program
Interface). Further, an API can at any time be synchronous,
asynchronous, manage one or more callbacks, require input,
pass back output, carry a variety of different styles of func-

Ser. No. 08/911,083, filedAug. 14, 1997, now abandoned;
Ser. No. 08/950,911, filed Oct. 15, 1997, now abandoned;
Ser. No. 08/950,837, filed Oct. 15, 1997, now abandoned;
Ser. No. 08/950,738, filed Oct. 15, 1997, now abandoned;
Ser. No. 08/950,741, filed Oct. 15, 1997, now abandoned; 20

tions, return values or not return values, and implement the
unpredictable. This unpredictability in APis further com
pounds the problem of developing a sane way of interfacing all of which are hereby incorporated by reference.

This application is related to, and claims priority to, the
following provisional applications by way the claim of prior
ity of the above listed non-provisional applications:

Oct. 18, 1996, Ser. No. 60/028,522;
Oct. 18, 1996, Ser. No. 60/028,128;
Oct. 18, 1996, Ser. No. 60/028,697;
Oct. 18, 1996, Ser. No. 60/028,639;
Oct. 18, 1996, Ser. No. 60/028,685;

all of which are hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention is generally related to a computer
architecture and process for stand-alone and/or distributed
environment, and more particularly to a computer architec
ture and process using a substantially uniform management in

between components and APis.
To date, because of the complexities of"C"-levelAPis and

components interfacing thereto, the only way to create a
25 component out of an existing "C"-level API is to have an

experienced programmer in the field to do the work. Humans
can intelligently analyze an API, and create a component
based on intelligent decisions and experiences. In most cases,
the learning curve for understanding and integrating a new

30 engine can be one man-month to several man-years and gen
erally requires highly experienced "C" programmers. Requir
ing a human to perform the necessary work is costly, and
subject to real-life human constraints.

Since there is no structure or format for implementing
35 "C"-level APis, the ability to automatically transform a

unique API into a standard component would seem impos
sible, since that would take a nearly-human level of intelli
gence.

a stand-alone and/or distributed computing environment
including, for example, client server and/or intranet and/or 40

internet operating environments.

In addition, in spite of the continued automation of busi
ness processes, companies are increasing their paper use by
25-30% and spending up to 15% of their total budget on
managing paper. Companies are often running dual pro
cesses-a computerized process along with the correspond
ing paper filing system-and paying an extraordinary price

BACKGROUND OF THE RELATED ART

A "C" or "C++"-Level API (hereinafter "C" Level),
which is the native language and interface for a vast reposi
tory of core technologies from small software vendors and
research laboratories, are unique to each designer. The
designer of a text retrieval "C" -API will generally implement
an interface that is completely different than a second inven
tor creating a "C" -level API for OCR.

Every "C"-level API is unique, both in its choice of API
syntax as well as its method for implementing the syntax.
SomeAPI's consist of one or two functions that take param
eters offering options for different features offered by the
technology. Other APis consist ofhundreds offunctions with
few arguments, where each function is associated with a
particular feature of the core technology. Other APis provide
a mixture of some features being combined with one function
with many arguments, while other features are separated into
individual function calls.

45 for it. Just a few examples will illustrate the problem: 1)
accounting clerks are maintaining paper invoices with infor
mation that is also being re-keyed into accounting systems, 2)
administrative assistants are filing incoming correspondence
in cabinets for customers whose records are also being elec-

50 tronically maintained by contact management systems, 3)
help desk operators are storing complaints sent in on paper
while also tracking those complaints in a computerized sys
tem. Additional industry trends include the following:

For every $100M in increased revenues, a company will
55 use 8.8 million additional pages of paper

The Document Management market is expected to grow at
30% per year

The digital device market is growing at 20% per year
Estimates show the web-based document imaging market

60 growing at 50% per year

Without any constraints, each designer of a core technol
ogy chooses to implement his or her technology with an
interface that is suitable to the subject or simply was the most
expedient choice of the moment. Since there are no con- 65

straints, a "C" -level API has a totally unpredictable interface
that can often be the hindrance to using the core technology.

The digital device manufacturers, especially the copier
companies, are heavily promoting the ability to connect their
devices to networks, but have not been able to deliver an
effective software solution to date.

Businesses continue to automate more processes, but man
aging the associated paper is often ignored, resulting in inef
ficiency and higher costs.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 47 of 92

US 7,477,410 Bl
3

I have determined that a component factory, if it is to be
truly automated or manually expedited, must be able to take
any "C" -level API and transform it into a component.

I have also determined an efficient and workable design for
an architecture to define the migration path for any "C" -level
API into a component.

I have also determined that it is desirable to develop soft
ware tools for automatically generating reusable software
components from core software technologies, thus making
these software technologies available to a much larger user 10

base.
I have further determined that it is desirable to design a

distributed computer architecture and process for manually
and/or automatically generating reusable software compo
nents. The computer architecture may be implemented using 15

a client server and/or intranet and/or internet operating envi-
ronments.

4
The computer architecture is designed for managing a

diverse set of independent core technologies ("engines")
using a single consistent framework. The architecture bal
ances two seemingly opposing requirements: the need to
provide a single consistent interface to many different
engines with the ability to access the unique features of each
engine.

The benefit of the architecture is that it enables a company
to rapidly "wrap" a sophisticated technology so that other
high-level developers can easily learn and implement the core
technology. The computer architecture is therefore a middle-
ware or enabling technology.

Another benefit of the architecture is that it provides a
high-level specification for a consistent interface to any core
technology. Once a high-level developer learns the interface
described herein for one engine, that knowledge is easily
transferable to other engines that are implemented using the
architecture. For example, once a high-level developer learns
to use the computer architecture for OCR (Optical Character

I have further determined that it is desirable to design a
computer architecture and process for image viewing in a
stand-alone and/or distributed environment. The computer
architecture and process optionally uses a substantially uni
form management layer in a stand-alone and/or distributed
computing environment including, for example, client server
and/or intranet and/or internet operating environments.

20 Recognition), using the computer architecture for other
engines, such as barcode recognition or forms processing, is
trivial.

I have further determined that it is desirable to enable a 25

typical PC user to add electronic paper processing to their
existing business process.

I have further determined that it is desirable to enable
software that manages paper so that it can be electronically
and seamlessly copied in and out of devices and business
applications (such as Microsoft Office, Microsoft Exchange,
Lotus Notes) with an optional single-step Go operation.

The architecture described herein is, at once, a framework
for rapidly wrapping sophisticated technologies into high
level components, as well as a framework for high-level
developers to communicate with a diverse set of engines. The
creating of a component factory is based on the fact that the
architecture defines a clear path for "wrapping" any C-leve!
API into a component using simple structures and many rote

30 steps. This process is currently being done in an inefficient
mauner by a programmer in the field.

SUMMARY OF THE INVENTION

In addition, the method described herein for creating a
component factory creates a well-defined multi-tiered archi-

One would expect the translating a "C" -level API from its
native state into a component would require human-level
intelligence. This is mainly because "C"-level APis have
virtually no constraints as to how they can be implemented.
This means that there are an infinity variations of APis, which
can only be managed by human-level intelligence. While this
point is true, I have determined that the appropriate solution
starts at the other side of the equation, which is the component
itself.

35 tecture for a component and automates, substantially auto
mates, or manually expedites hereinafter automate the pro
cess of migrating a "C" -API from its native state through the
various tiers of the architecture resulting in a standardized
component. Advantageously, the method described herein

40
does not base the component factory on making human-level
intelligent decisions on how to translate a "C"-API into a
component. Rather, by creating a well-defined architecture
described below that is multi-tiered, the method is a series of
incremental steps that need to be taken to migrate the "C"-

My solution starts out with a definition of a component that
can sustain the feature/function requirements of any API. In
other words, the interface of a generic component can be
defined such that the features and functions of virtually any
API can be re-implemented within its bounds. The two known
end-points are, for example, the "C" -level API that generally 50

starts with each component (although other progrming
languages may also be used and are within the scope of the
present invention), and the component interface that repre
sents any set of features/functions on the other side. The
component factory migrates the original "C" -level API from 55

its original state into the generic interface defined by the
topmost layer. The first feature that can be demonstrated is
that there is a topmost layer that can define a component
interface that can represent the features/functions of most
core technologies.

45

60

The component factory migrates the "C"-level API to the
topmost level. Doing this in one large step would be impos
sible since the "C"-level API has a near-infinite variety of
styles. However, the architecture advantageously has enough
well-defined and well-structured layers for implementing the 65

topmost component interface, for creating the component
factory.

API from one tier within the architecture to the next. In this
way each incremental step is not a major one, but in sequence
the entire series of steps will result in a component.

Since each step of migration is not a major one, the chances
for automating these steps is significantly higher and the
likelihood of being able to create the component factory
becomes feasible. This approach is in fact what makes the
method cost-effective, since the alternative approach, i.e.,
computer-generated human-level decision making, has many
years before becoming sophisticated enough to replace
humans in any realistic decision-making process.

The main features of the architecture are twofold:

1) Defining system architecture that describes in detail how to
implement a component from a "C"-level API;

2) Creating a component factory by automating the migration
of a "C" -level API from one tier within the architecture to
the next.

The latter feature is the key to actually making the component
factory feasible. With a fixed architecture that can be used to
implement a "C" -level API as a component (using a program
mer), that same architecture can be used as the basis for the
component factory model.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 48 of 92

US 7,477,410 Bl
5

In order to make the component factory, each step of the
architecture needs to be designed to facilitate automation or
manually expedited. In other words, I have determined that
automating/expediting the process of taking the original "C"
level API and migrating it to a Levell layer, and then a Level
1 to a Level2, and then a Level2 to a Level 3 layer, and so on,
the component has been implemented automatically or more
efficiently. The component factory is therefore a sum of the
ability to automate migrating the "C"-level API from one
layer to the next within a well-defined architecture for imple
menting components.

There are numerous core technologies, such as text-re
trieval and ICR (Intelligent Character Recognition), that have
already been implemented, and are only available as "C"
level APis. Many, if not most, core technologies are first
released exclusively as "C" -level APis. While there are inte
grators and corporations who have the team of technologists
who can integrate these "C" -level APis in-house, most com
panies are looking for component versions that can be imple
mented at a much higher level.

Therefore, many of the core technologies that are only
available in a "C"-level API are not being used due to their
inaccessible interface. The benefit of the component factory
is that it can rapidly make available core technologies imple
mented as "C" APis that would otherwise be underutilized or
dormant in research labs by converting them to high-level
components that can be used by millions of power-PC users.

With the advent of the World Wide Web (WEB) this oppor
tunity has increased exponentially. The WEB is now home to
a vast number of WEB authors with minimal formal training
who can implement HTML pages and build web sites. One of
the fundamental technologies for extending the capability of
the WEB from simple page viewing to interactive and sophis
ticated applications is components.

A component extends the capability ofHTML by enabling
a WEB author to add core technology as a pre-packaged
technology. Since components are fundamental to the growth
and usability of the WEB, having a component factory that
can translate "C" -level toolkits into components that are then
usable within WEB sites opens a vast and new worldwide
market to these technologies.

The purpose of the Virtual Copier ("VC") aspect of the
present invention is to enable a typical PC user to add elec
tronic paper processing to their existing business process. VC
is an extension of the concept we understand as copying. In its
simplest form it extends the notion of copying from a process
that involves paper going through a conventional copier
device, to a process that involves paper being scanned from a
device at one location and copied to a device at another
location. In its more sophisticated form, VC can copy paper
from a device at one location directly into a business appli
cation residing on a network or on the Internet, or visa versa.
The VC invention is software that manages paper so that it can

6
"copied" into the system and managed by the business pro
cesses with which users are accustomed, which is made pos
sible by using Virtual Copier. Simple extensions of Virtual
Copier support seamless electronic outsourcing of paper pro
cessing and archival services over the web.

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing Intranet and client-server business processes without

10 any fuss. Whether it is an office clerk that needs to easily copy
a report from a desktop scanner to the company's Intranet
networked copier, or an accounting software integrator that
wants to embed paper processing, Virtual Copier offers a
simple solution. To the office clerk Virtual Copier is a docu-

15 ment imaging application packaged in the familiar setting of
an office copier. To the integrator, the underlying open arc hi
tecture of Virtual Copier offers a simple integration path for
embedding paper processing into its client-server or web
based software solution.

20 Although managing paper manually is one of the great
problems facing corporations, there has been little innovation
in enabling those workers to eliminate the need to continu
ously work with paper manually. Much of the problem stems
from the complexity of traditional document management

25 systems, which require days of training and months to
become familiar with the system in order to be proficient.
Virtual Copier was designed to be as simple as a copier to
operate, and yet still provide the complete capability of inte
grating paper with existing business applications. By simpli-

30 :tying the interface and underlying software infrastructure,
VC can manage paper in electronic form as easily as is cur
rently done in physical form.

VC extends the notion of a copier, which simply replicates
the image of an original document onto another piece of paper

35 using a single GO or START button, to do a similar operation
in software so that the image gets seamlessly replicated into
other devices or applications or the Internet.

An example of this is the actual implementation ofVirtual
Copier as a consumer product. The interface of the consumer

40 product called Virtual Copier has a Go button much like a
physical copier. This GO button can copy paper, whether
physical or electronic, from one device and or application to
another device and/or application.

What makes Virtual Copier as simple as its physical coun-
45 terpart in at least one embodiment is the fact that it replicates

the identical motions that a user who is making a copy using
a physical photocopier goes through. When a user photo
copies a document, he/she selects where they want to copy
from (i.e. the sheet feeder), where the user wants to copy to

50 (i.e. 6 copies collated and stapled) and then presses a GO
button to actually carry out the photocopy process. With
Virtual Copier the process feels familiar because the
sequence is the same with just the Power VC portion of the

be electronically and seamlessly copied in and out of devices
and business applications (such as Microsoft Office, 55

Microsoft Exchange, Lotus Notes) with an optional single
step Go operation. The VC software can reside on a PC,
LAN/WAN server, digital device (such as a digital copier), or

main Virtual Copier window.
The power ofVirtual Copier is the fact that the From can be

a physical device (e.g. digital copier, fax or scanner) or an
application (e.g. Lotus Notes, Microsoft Exchange, the Inter
net, or an electronic filing system). The To can also be a
physical device (e.g. a fax, digital copier, or printer) or an on a web server to be accessed over the Internet.

Virtual Copier is designed to solve the corporate paper
problem by enabling existing web-based and client-server
applications to manage paper as part of their solution. Virtual
Copier links the familiar and universal world of paper and
digital devices to web-based and client-server applications.
The result is that the automated business processes become
the primary storage of paper in electronic form. Information
that is typically managed and processed in paper form is

60 application (e.g. Lotus Notes, Microsoft Exchange, the Inter
net, or an electronic filing system). Even though paper is
being copied electronically from devices to applications,
from applications to devices, from devices to devices, or from
applications to applications, the user simply has one sequence

65 to execute: select From, select To, and then press GO. Virtual
Copier will accomplish all translations between device and
applications automatically and seamlessly.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 49 of 92

US 7,477,410 Bl
7

Another reason that paper is still a major corporate issue is
that traditional document management systems require that a
company invest in a whole new system just to store electronic
images. Although this is the only way that document man
agement systems have been designed and delivered, it is in
fact highly inefficient. Most companies already manage
information about physical documents in some form of soft
ware applications.

For example, accounting systems have long been used to
maintain information about invoices and bills that arrive into
a company from outside sources as physical pieces of paper.
When an invoice arrives, its information is keyed into the
accounting software, where balances are maintained and
accounts payable information is coordinated. Yet the original
invoice is stored manually, and every time that a request is
made for a copy of the signed invoice, someone manually
retrieves the invoice from a physical filing cabinet. Account
ing systems, like most business applications, typically have

8
modular design ofVC, each aspect ofVC can be indepen
dently extended, offering much greater flexibility than con
ventional copiers.

The five core modules ofVC are:
Input Module-The Input Module manages paper or elec

tronic paper entering VC. This module manages imaging
devices to input paper through scanners, MFPs, or the new
breed of digital copiers. The Input Module also manages
reading electronic paper from third-party or proprietary

10 applications. The counterpart to VC's Input Module on a
conventional copier is the scanner subsystem.

Output Module-The Output Module manages paper or
electronic paper exiting VC. Like the Input Module, this
module manages imaging devices to output paper to standard

15 Windows printers, specialty image printers, MFPs, or the new
breed of digital copiers. The Output Module also manages
writing electronic paper to third-party or proprietary applica
tions. The counterpart to VC's Output Module on a conven-

no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an 20

accounting system is cumbersome, costly, and difficult to
maintain, and even more difficult to coordinate.

tional copier is the printer or fax subsystem.
Process Module-The Process Module applies processing

to the electronic paper as it is being copied. Examples of a
process are OCR and ICR. The Process Module can also
apply non-imaging functionality as well, such as workflow or
other relevant tie-ins to the electronic paper as it is being

Virtual Copier solves this problem in at least one embodi
ment by copying paper directly into the existing accounting
system. Simply adding a To item in the Virtual Copier win
dow enables a user to copy paper directly into the appropriate
accounting record of the existing accounting system. This
requires no retraining (users who are trained on the account
ing system will still use the accounting system in the same
way), requires no document management system (the elec
tronic copy of the document is actually being maintained by
the accounting system itself), there is no coordination
between two systems (Virtual Copier embeds the invoice with
the appropriate accounting record), and it is simple (one Go
button).

What is true with regard to the example above of an
accounting system is true of most other business applications.
The power ofVirtual Copier is that it can turn an information
system into a document management system by adding sup
port for electronic paper directly into the existing business
application, whether it is a client, server-based, or web-based
system.

Virtual Copier enables corporations to perform sophisti
cated document imaging with their existing Web-based and
client-server applications through a user interface that is as
familiar as the office copier. Virtual Copier can be used out
of-the-box as a standalone application to copy, scan, fax, or
print images using existing digital devices within corporate
environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into Web
based and client server applications, such as ERP or account
ing systems, to eliminate paper from existing business pro
cesses and legacy applications. Virtual Copier can also be
used to support seamless access to document image process
ing and archival over the web since, in at least one embodi
ment, the VC interface is implemented as a software applica
tion.

VC is architected as an application that delivers end-user
functionality while remaining open to third-parties exten
sions. For example, VC can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only difference is that VC does not distinguish between elec
tronic and physical paper.

To accommodate third-party extensions, VC is divided into
five essential modules. Each module is a counterpart to an
aspect that is found on a conventional copier. Based on the

25 copied. One of the advantages ofVC over conventional co pi
ers is that multiple processes can be applied to a single virtual
copy. The counterpart to VC's Process Module on a conven
tional copier is the controller.

Client Module-The Client Module presents the elec-
30 tronic paper as it is being copied, and any relevant informa

tion related to the input or output functions. For example, if
the Output Module is directed to a printer, then the Client
Module might present the finishing capabilities; if the Output
Module is directed to Goldmine, then the Client Module

35 might present the target contact record to which the document
is being copied. The counterpart to VC's Client Module on a
conventional copier is the panel.

Server Module-Unlike conventional copiers, VC's
Server Module is a unique subsystem that can communicate

40 with the other modules as well as third-party applications.
The Server Module is what makes VC a far more powerful
concept than simply an application that can control a scanner
and a printer to mimic a copier. The Server Module can be
used to combine third-party applications with the new breed

45 of digital imaging devices to create unique and custom virtual
copier solutions. A virtual copier can be created with VC by
combining a scanner with a printer; or by combining a scan
ner with an application; or by combing an application with an
image printer. In each case VC is dynamically creating a

50 custom virtual copier, with a complete understanding of how
paper flows from the source to its destination. There is no
counterpart to VC' s Server Module on a conventional copier.

One of the primary design goals ofVC is to make it simple
to integrate VC with third-party applications. There are two

55 options to integrating VC into a third-party application: run
ning VC as an external service, or embedding VC as an
underlying service.

VC is in one embodiment and optionally a standalone
application that enables a user to scan (copy) paper from a

60 device to a third-party application, and to print (copy) the
reference of an image document from a third-party applica
tion to a printing device. VC does not require the third-party
application to be aware that VC is operating. Rather, VC
recognizes that the third-party application is running, and it

65 intelligently copies paper to and from that application.
In this scenario the user is interacting with VC's Client

Module in order to execute a copy operation to and from the

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 50 of 92

US 7,477,410 Bl
9

third-party application. There does not have to be any changes
made to the third-party application, not even to its interface, in
order for VC to operate. The user ofVC only knows that to
copy to and from the third-party application, a custom Input
and Output Module must be selected, and the Go button is
pressed.

10
It is another feature and advantage of the present invention

to develop software tools to make software components avail
able to a much larger user base.

In order to support copying to and from a third-party appli
cation, VC must be able to support extensions that understand
each third-party application. This is accomplished through
the Input and Output Modules. The Client, Server, and even 10

Process Modules remain independent across third-party
applications. However, in order to support outputting to a
third-party application, an Output Module is developed that is
unique to that third-party application. Likewise, an Input
Module is developed that is unique to a third-party applica- 15

tion in order to support reading images from that application.

It is another feature and advantage of the present invention
in providing a distributed computer architecture and process
for manually and/or automatically generating reusable soft
ware components.

It is another feature and advantage of the present invention
in providing a distributed computer architecture and process
for manually and/or automatically generating reusable soft
ware components where the computer architecture is imple-
mented using a client server and/or intranet and/or internet
operating environments.

It is another feature and advantage of the present invention
in providing a computer architecture and process for image
viewing in a stand-alone and/or distributed environment.

It is another feature and advantage of the present invention
in providing a computer architecture and process that uses a
substantially uniform management layer in a stand-alone and/
or distributed computing environment including, for
example, client server and/or intranet and/or internet operat-
ing environments.

It is the optional Input and Output Modules that render VC
extendable. For each third-party application there is a unique
pair of Input and Output Modules that understand the third
party application, and how to copy images to and from that 20

application. Each Input and Output Module registers itself to
the Windows registry so that the Server Module knows how to
find them. In this way Virtual Copier can grow indefinitely, to
support any number of third-party applications.

It is another feature and advantage of the present invention
to enable a typical PC user to add electronic paper processing

25 to their existing business process.
The significant point is that the Input and Output Modules

have their own interface, and can be developed independently
from any other module. As long as the Input and Output
Module conform to the API specified in this document it will
plug-and-play with VC. VC will be able to mix and match the
custom Input and Output Module with its standard and other
custom Input and Output Modules.

A third-party application can also use the services ofVC
without its user interface. That is, a third-party application
can embed VC' s functionality and provide its own interface to
its functionality. For example, rather than have VC as a sepa
rate application, a special button can be placed on a third
party application that launches VC in the background.

VC is designed so that the Server Module can run indepen
dently from the Client Module. All the core functionality,
including communicating with the Input, Output, and Process
Modules, are performed directly by the Server Module. The
Client Module is generally simply an interface to the Server
Module. Therefore, all the services of the Server Module can

It is another feature and advantage of the present invention
to enable software that manages paper so that it can be elec
tronically and seamlessly copied in and out of devices and
business applications (such as Microsoft Office, Microsoft

30 Exchange, Lotus Notes) with an optional single-step Go
operation.

The present invention is based, in part, on my discovery
that it is possible to make the component factory, and that
each step of the architecture is designed to facilitate automa-

35 tion or manually design of components. The present invention
is also based, in part, on my discovery that by automating/
expediting the process of taking the original "C" -level API
and migrating it to a Level 1 layer, and then a Level 1 to a
Level 2, and then a Level 2 to a Level 3 layer, and so on, the

40 component has been implemented automatically and/or more
manually efficiently. The component factory is therefore a
snm of the ability to automate migrating the "C" -level API
from one layer to the next within a well-defined architecture
for implementing components.

be made available in the background to a third-party applica- 45

tion without the need for an interface. The third-party appli
cation can in fact become the user's interface to VC.

The present invention is also based, in part, on my discov-
ery that the object manager and engine object component
layers may be advantageously be designed to operate inde
pendently, thereby making possible a distributed computing
environment, as described below in detail. I have further

In order to support VC operating in the background a
third-party application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in VC, support COM
based interfaces for simple and direct support from all major
Windows development environments.

Accordingly, it is a feature and advantage of the present
invention to implement a component factory, that is auto
mated or manually expedited.

It is another feature and advantage of the present invention
to be able to take any "C"-level API and transform it into a
component.

It is another feature and advantage of the present invention
to define an efficient and workable design for an architecture
to provide the migration path for any C-leve! API into a
component.

It is another feature and advantage of the present invention
to develop software tools for automatically generating reus
able software components from core software technologies.

50 discovered that an efficient method of implementing the
engine object component layer is by using pre-populated
tables/files. I have further discovered that the engine manage
ment layer may be advantageously divided into a three layer
structure of load/unload engine, dynamic linking engine

55 function calls, and initialize engine setting.
In accordance with one embodiment of the invention, a

computer implemented process migrates a program specific
Application Programmer Interface (API) from an original
state into a generic interface by building an object for each

60 engine. The object provides substantially uniform access to
the engine and engine settings associated with the engine. The
computer implemented process includes the step of providing
an engine management function interfacing with the program
specific API. The engine management function furnishes a

65 protective wrapper for each function call associated with the
engine, trapping errors, and provides error management and
administration to prevent conditions associated with

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 51 of 92

US 7,477,410 Bl
11

improper engine functioning. The process optionally
includes the step of providing an engine configuration func
tion transforming API calls received from the program spe
cific API into standardized calls. The engine configuration
function provides additional functionality, including safely
loading and unloading the engine. The process optionally
includes the step of providing an engine function managing
the standardized calls for each engine, thereby providing
substantially uniform access to the engine and the engine
settings associated with the engine.

In accordance with another embodiment of the invention, a
computer implemented method migrates at least one program
specific Application Programmer Interface (API) from an
original state into a generic interface by building an object for
each engine. The object provides substantially uniform
access to the engine and engine settings associated with the
engine. The computer implemented method includes the
steps of defining a substantially consistent interface for indi
vidual object components that represent diverse technologies,
and migrating a plurality of engines to the consistent inter
face. The computer implemented method also includes the
step of substantially automatically and/or substantially uni
formly, managing the individual object components using a
predefined object manager and the consistent interface.

In accordance with another embodiment of the invention, a
computer architecture migrates at least one program specific
Application Programmer Interface (API) from an original
state into a generic interface by building an object for each
engine. The object provides substantially uniform access to
the engine and engine settings associated with the engine. The
computer architecture includes an engine management layer
interfacing with the program specific API and providing
engine management and administration, an engine configu
ration layer transforming API calls received from the program
specific API into standardized calls, and an engine layer man
aging the standardized calls for each engine.

In accordance with another embodiment of the invention,
an engine management layer configures a computer architec
ture to perform one or more computer implemented or com
puter assisted operations. The computer operations include
one or more of loading and unloading engine dynamic link
libraries into and out of memory for each engine, mapping at
least one engine function to at least one corresponding engine
object, providing general error detection and error correction
for each engine, determining and matching arguments and
returning values for mapping the at least one engine function
to the at least one corresponding engine object, and/or man
aging error feedback from the at least one program specific
API. In accordance with another embodiment of the inven
tion, a distributed computer system migrates a program spe
cific Application Programmer Interface (API) from an origi
nal state into a generic interface by building an object for each
engine. The object provides substantially uniform access to
the engine and engine settings associated with the engine. The
distributed computer system includes a server configured to
include at least one engine having an engine interface provid
ing one or more features to be executed, and at least one
engine component configured to execute the one or more
features of the engine by mapping a substantially consistent
interface to the engine interface of the engine. The distributed
computer system also includes at least one client configured
to be connectable to the server and optionally configured to be
connectable to another server. The client includes an object
manager layer communicable with and managing the at least
one engine component stored on the server via the substan
tially consistent interface.

12
In accordance with another embodiment of the invention, a

distributed computer implemented process migrates a pro
gram specific Application Programmer Interface (API) from
an original state into a generic interface by building an object
for each engine. The object provides substantially uniform
access to the engine and engine settings associated with the
engine. The computer implemented process includes the step
of providing, on a server, at least one engine having an engine
interface, and providing one or more features to be executed.

10 The computer implemented process also includes the step of
providing, on at least one of the server and another server
connectable to the server, at least one engine component
configured to execute the one or more features of the engine
by mapping a substantially consistent interface to the engine

15 interface of the engine. The computer implemented process
also includes the step of providing, on a client configured to
be connectable to the server and optionally configured to be
connectable to the another server, an object manager layer
communicable with and managing the at least one engine

20 component via the substantially consistent interface.
In accordance with another embodiment of the invention,

an image viewer process views at least one document image
including an electronic document image, and performs view
ing operations to the electronic document image. The process

25 includes the step of selecting, by the user, one of a plurality of
image viewing perspectives. Each of the plurality of image
viewing perspectives provide the user the capability of view
ing the document image in accordance with a different pre
defined user perspective. The process also includes the steps

30 of selecting, by the user, using the image viewer process the
document image to be viewed, and retrieving, by the image
viewer process, the document image. The process also
includes the step of displaying, by the image viewer process,
the selected document image in accordance with an image

35 viewing perspective selected by the user.
In accordance with another embodiment of the invention, a

computer readable tangible medium is provided that stores
the process thereon, for execution by the computer.

A computer data management system includes at least one
40 of an electronic image, graphics and document management

system capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a plu
rality of external destinations including one or more of exter
nal devices and applications. The computer data management

45 system is responsively connectable at least one oflocally and
via the Internet, and includes at least one memory storing a
plurality of interface protocols for interfacing and communi
eating, and at least one processor responsively connectable to
the at least one memory. The processor implements the plu-

50 rality of interface protocols as a software application for
interfacing and communicating with the plurality of external
destinations including the one or more of the external devices
and applications.

In one embodiment, the external devices and applications
55 include, for example, a printer, a facsimile, and a scanner. In

one embodiment, the computer data management system
includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at
least one of other devices and applications, and via the Inter-

60 net. In one embodiment, the computer data management sys
tem includes the capability to integrate the electronic images
into a destination application without the need to modify the
destination application.

In one embodiment, the computer data management sys-
65 tern includes an interface that enables copying images

between physical devices, applications, and the Internet using
a single "GO" operation. In one embodiment, the computer

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 52 of 92

US 7,477,410 Bl
13

data management system includes the capability of adding at
least one of electronic document and paper processing with a
single programming step.

In one embodiment, the software application includes at
least one input module managing data comprising at least one
of paper and electronic paper input to the computer data
management system, and managing at least one imaging
device to input the data through at least one of a scanner and
a digital copier, and managing the electronic paper from at
least one third-party software applications; at least one output
module managing the data output from the computer data
management system, managing at least one imaging device to
output the data to at least one of a standard Windows printer,
an image printer, and a digital copier, and managing the
output of the data to the third-party software application; at
least one process module applying at least one data process
ing to the data comprising the at least one of the paper and the
electronic paper as it is being copied, applying additional
functionality including at least one of workflow and process
ing functionality to the data comprising the at least one of
paper and electronic paper as it is being copied, and applying
multiple processes to a single virtual copy; at least one client
module presenting the data comprising the at least one of
paper and electronic paper as it is being copied, and informa
tion related to at least one of the input and output functions;
and at least one server module communicable with said at
least one input, output, client, and process modules and exter
nal applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data management
system into an external application via one of running the
computer data management system, as an external service
and embedding the computer data management system as an
embedded service.

In one embodiment, the server module includes enable
virtual copy operation means for initiating, canceling, and
resetting said computer data management system; maintain
list of available module means for maintaining a registry
containing a list of said input, output, and process modules
that can be used in said computer data management system,
said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input,
output, client, process and server modules; maintain currently
active modules means for maintaining said input, output, and
process modules currently being used for a current computer
data management system copy operation in a program object,
and saving the currently active modules in a process template
file; and maintain complete document information means for
maintaining information regarding a current file being cop
ied, and saving the information in a document template file.

In one embodiment, the server module includes at least one
server module application programmer interface (API). IN
one embodiment, the server module application programmer
interface (API) comprises the COM-based interfaces: at least
one modules object maintaining a first list of available input,
output, and process modules; at least one program object
maintaining a second list of currently selected input, output,
and process modules; at least one document object maintain
ing information regarding a current document being copied;
at least one system management method object used to ini
tiate, cancel, and reset said computer data management sys
tem; and at least one system management event object used to
provide feedback to the Client Module.

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and

14
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management system comprises:
a first capability to integrate an image using software so that
the image gets seamlessly replicated into at least one of other
devices and applications, and via the Internet; a second capa-

10 bility to integrate electronic images into existing applications
without the need to modifY the destination application; an
interface comprising a software application that enables
copying images between physical devices, applications, and
the Internet using a single "GO" operation; and a third capa-

15 bility of adding at least one of electronic document and paper
processing with a single programming step.

A computer data management system capable of managing
and transmitting at least one of an electronic image, electronic
graphics and electronic document to a plurality of external

20 destinations including one or more of external devices and
applications at least one of locally and via the Internet. The
computer data management system includes at least one
memory storing at least one of a common and universal inter
face protocol for interfacing and communicating; and at least

25 one processor responsively connectable to said at least one
memory, and implementing the at least one common and
universal interface protocol as a software application for
interfacing and communicating with the plurality of external
destinations including the one or more of the external devices

30 and applications.
In one embodiment, a computer readable tangible medium

stores instructions for implementing a process driven by a
computer implemented on at least one of an electronic image,
graphics and document management system capable of man-

35 aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including at least one of an external
device and application at least one of locally and via the
Internet. The instructions control the computer to perform the

40 process of: storing at least one of a common and universal
interface protocol for interfacing and communicating in at
least one memory; and implementing the at least one of com
mon and universal interface protocol as a software applica
tion via at least one processor for interfacing and communi-

45 eating with the plurality of external destinations including the
at least one external device and application.

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at

50 least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management system includes a

55 single function copy operation linking devices, applications
and the Internet including at least one a go operation, a single
function paper copy between devices and software applica
tions, and a single function paper copy between software
applications and devices; a one step progrming method to

60 add paper support to electronic business processes including
at least one of a one step method of supporting paper within
electronic business process application optionally including
legacy systems with no or minimal reprogramming of the
electronic business process application, a method ofrecreat-

65 ing a module oriented copier in software; and a copier inter
face implemented as software application including at least
one of a virtual copier interface method of presenting to a user

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 53 of 92

US 7,477,410 Bl
15

an operation of at least one of copying files and electronic
images, at least one of to and from, at least one of digital
imaging devices and software applications, in a substantially
single step, and presenting users with direct access to at least
one of tutorial and options from a main application window.

In one embodiment, a server module includes enable vir
tual copy operation means for initiating, canceling, and reset
ting said computer data management system; maintain list of
available module means for maintaining a registry containing
a list of said input, output, and process modules that can be 10

used in said computer data management system, said list
being read on startup, and maintaining another copy of said
list in a modules object accessible by said input, output,
client, process and server modules; maintain currently active
modules means for maintaining said input, output, and pro- 15

cess modules currently being used for a current computer data
management system copy operation in a program object, and
saving the currently active modules in a process template file;
and maintain complete document information means for
maintaining information regarding a current file being cop- 20

ied, and saving the information in a document template file.
In one embodiment, a computer data management method

includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and 25

electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises the steps of integrating an
image using software so that the image gets seamlessly rep- 30

licated into at least one of other devices and applications, and
via the Internet; integrating electronic images into existing
applications without the need to modify the destination appli
cation; interfacing via a software application enabling copy
ing images between physical devices, applications, and the 35

Internet using a single "GO" operation; and adding at least
one of electronic document and paper processing with a
single programming step.

In one embodiment, a server method includes initiating,
canceling, and resetting said computer data management sys- 40

tern; maintaining a registry containing a list of said input,
output, and process modules that can be used in said computer
data management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server 45

modules; maintaining said input, output, and process mod
ules currently being used for a current computer data man
agement system copy operation in a program object, and
saving the currently active modules in a process template file;
and maintaining information regarding a current file being 50

copied, and saving the information in a document template
file.

16
In one embodiment, the external devices and applications

include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data administration system
includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at
least one of other devices and applications, and via the Inter
net. In one embodiment, the computer data administration
system includes the capability to integrate the electronic
images into a destination application without the need to
modifY the destination application.

In one embodiment, the computer data administration sys
tem includes an interface that enables copying images
between physical devices, applications, and the Internet using
a single "GO" operation. In one embodiment, the computer
data administration system includes the capability of adding
at least one of electronic document and paper processing with
a single progrannning step.

In one embodiment, the software application includes at
least one input module managing data comprising at least one
of paper and electronic paper input to the computer data
administration system, and managing at least one imaging
device to input the data through at least one of a scanner and
a digital copier, and managing the electronic paper from at
least one third-party software applications; at least one output
module managing the data output from the computer data
administration system, managing at least one imaging device
to output the data to at least one of a standard Windows
printer, an image printer, and a digital copier, and managing
the output of the data to the third-party software application;
at least one process module applying at least one data pro
cessing to the data comprising the at least one of the paper and
the electronic paper as it is being copied, applying additional
functionality including at least one of workflow and process
ing functionality to the data comprising the at least one of
paper and electronic paper as it is being copied, and applying
multiple processes to a single virtual copy; at least one client
module presenting the data comprising the at least one of
paper and electronic paper as it is being copied, and informa
tion related to at least one of the input and output functions;
and at least one server module communicable with said at
least one input, output, client, and process modules and exter-
nal applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data administration
system into an external application via one of running the
computer data administration system, as an external service
and embedding the computer data administration system as
an embedded service.

In one embodiment, the server module includes enable
virtual copy operation means for initiating, canceling, and
resetting said computer data administration system; maintain
list of available module means for maintaining a registry

A computer data administration system includes at least
one of an electronic image, graphics and document adminis
tration system capable of transmitting at least one of an elec
tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications. The computer data admin
istration system is responsively connectable at least one of
locally and via the Internet, and includes at least one memory
storing a plurality of interface protocols for interfacing and
commnnicating, and at least one processor responsively con
nectable to the at least one memory. The processor imple
ments the plurality of interface protocols as a software appli
cation for interfacing and commnnicating with the plurality
of external destinations including the one or more of the
external devices and applications.

55 containing a list of said input, output, and process modules
that can be used in said computer data administration system,
said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input,
output, client, process and server modules; maintain currently

60 active modules means for maintaining said input, output, and
process modules currently being used for a current computer
data administration system copy operation in a program
object, and saving the currently active modules in a process
template file; and maintain complete document information

65 means for maintaining information regarding a current file
being copied, and saving the information in a document tem
plate file.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 54 of 92

US 7,477,410 Bl
17

In one embodiment, the server module includes at least one
server module application programmer interface (API). IN
one embodiment, the server module application programmer
interface (API) comprises the COM-based interfaces: at least
one modules object maintaining a first list of available input,
output, and process modules; at least one program object
maintaining a second list of currently selected input, output,
and process modules; at least one document object maintain
ing information regarding a current document being copied;
at least one system administration method object used to
initiate, cancel, and reset said computer data administration
system; and at least one system administration event object
used to provide feedback to the Client Module.

In one embodiment, a computer data administration sys
tem includes at least one of an electronic image, graphics and
document administration system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data administration system com
prises: a first capability to integrate an image using software
so that the image gets seamlessly replicated into at least one of
other devices and applications, and via the Internet; a second
capability to integrate electronic images into existing appli
cations without the need to modify the destination applica
tion; an interface comprising a software application that
enables copying images between physical devices, applica
tions, and the Internet using a single "GO" operation; and a
third capability of adding at least one of electronic document
and paper processing with a single programming step.

A computer data administration system capable of manag
ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data administration system includes at
least one memory storing at least one of a common and
universal interface protocol for interfacing and communicat
ing; and at least one processor responsively connectable to
said at least one memory, and implementing the at least one
common and universal interface protocol as a software appli
cation for interfacing and communicating with the plurality
of external destinations including the one or more of the
external devices and applications.

In one embodiment, a computer readable tangible medium
stores instructions for implementing a process driven by a
computer implemented on at least one of an electronic image,
graphics and document administration system capable of
managing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including at least one of an external
device and application at least one of locally and via the
Internet. The instructions control the computer to perform the
process of: storing at least one of a common and universal
interface protocol for interfacing and communicating in at
least one memory; and implementing the at least one of com
mon and universal interface protocol as a software applica
tion via at least one processor for interfacing and communi
cating with the plurality of external destinations including the
at least one external device and application.

In one embodiment, a computer data administration sys
tem includes at least one of an electronic image, graphics and
document administration system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications

18
responsively connectable at least one of locally and via the
Internet. The computer data administration system includes a
single function copy operation linking devices, applications
and the Internet including at least one a go operation, a single
function paper copy between devices and software applica
tions, and a single function paper copy between software
applications and devices; a one step progrannning method to
add paper support to electronic business processes including
at least one of a one step method of supporting paper within

10 electronic business process application optionally including
legacy systems with no or minimal reprogramming of the
electronic business process application, a method of recreat
ing a module oriented copier in software; and a copier inter
face implemented as software application including at least

15 one of a virtual copier interface method of presenting to a user
an operation of at least one of copying files and electronic
images, at least one of to and from, at least one of digital
imaging devices and software applications, in a substantially
single step, and presenting users with direct access to at least

20 one of tutorial and options from a main application window.
In one embodiment, a server module includes enable vir

tual copy operation means for initiating, canceling, and reset
ting said computer data administration system; maintain list
of available module means for maintaining a registry contain-

25 ing a list of said input, output, and process modules that can be
used in said computer data administration system, said list
being read on startup, and maintaining another copy of said
list in a modules object accessible by said input, output,
client, process and server modules; maintain currently active

30 modules means for maintaining said input, output, and pro
cess modules currently being used for a current computer data
administration system copy operation in a program object,
and saving the currently active modules in a process template
file; and maintain complete document information means for

35 maintaining information regarding a current file being cop
ied, and saving the information in a document template file.

In one embodiment, a computer data administration
method includes at least one of an electronic image, graphics
and document administration system capable of transmitting

40 at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises the steps of integrating an

45 image using software so that the image gets seamlessly rep
licated into at least one of other devices and applications, and
via the Internet; integrating electronic images into existing
applications without the need to modify the destination appli
cation; interfacing via a software application enabling copy-

50 ing images between physical devices, applications, and the
Internet using a single "GO" operation; and adding at least
one of electronic document and paper processing with a
single progrannning step.

In one embodiment, a server method includes initiating,
55 canceling, and resetting said computer data administration

system; maintaining a registry containing a list of said input,
output, and process modules that can be used in said computer
data administration system, said list being read on startup,
and maintaining another copy of said list in a modules object

60 accessible by said input, output, client, process and server
modules; maintaining said input, output, and process mod
ules currently being used for a current computer data admin
istration system copy operation in a program object, and
saving the currently active modules in a process template file;

65 and maintaining information regarding a current file being
copied, and saving the information in a document template
file.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 55 of 92

US 7,477,410 Bl
19

A computer information management system includes at
least one of an electronic image, graphics and document
management system capable of transmitting at least one of an
electronic image, electronic graphics and electronic docu
ment to a plurality of external destinations including one or
more of external devices and applications. The computer
information management system is responsively connectable

20
In one embodiment, the server module includes enable

virtual copy operation means for initiating, canceling, and
resetting said computer information management system;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said computer information man
agement system, said list being read on startup, and maintain
ing another copy of said list in a modules object accessible by
said input, output, client, process and server modules; main
tain currently active modules means for maintaining said
input, output, and process modules currently being used for a
current computer information management system copy
operation in a program object, and saving the currently active
modules in a process template file; and maintain complete

at least one oflocally and via the Internet, and includes at least
one storage storing a plurality of interface protocols for inter
facing and communicating, and at least one processor respon- 1 o
sively connectable to the at least one storage. The processor
implements the plurality of interface protocols as a software
application for interfacing and communicating with the plu
rality of external destinations including the one or more of the
external devices and applications. 15 document information means for maintaining information

regarding a current file being copied, and saving the informa
tion in a document template file.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scarmer. In
one embodiment, the computer information management
system includes the capability to integrate an image using
software so that the image gets seamlessly replicated and
transmitted to at least one of other devices and applications,
and via the Internet. In one embodiment, the computer infor
mation management system includes the capability to inte
grate the electronic images into a destination application
without the need to modify the destination application.

In one embodiment, the computer information manage
ment system includes an interface that enables copying
images between physical devices, applications, and the Inter
net using a single "GO" operation. In one embodiment, the
computer information management system includes the capa
bility of adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, the software application includes at
least one input module managing information comprising at
least one of paper and electronic paper input to the computer
information management system, and managing at least one
imaging device to input the information through at least one
of a scarmer and a digital copier, and managing the electronic
paper from at least one third-party software applications; at
least one output module managing the information output
from the computer information management system, manag
ing at least one imaging device to output the information to at
least one of a standard Windows printer, an image printer, and
a digital copier, and managing the output of the information to
the third-party software application; at least one process mod
ule applying at least one information processing to the infor
mation comprising the at least one of the paper and the elec
tronic paper as it is being copied, applying additional
functionality including at least one of workflow and process
ing functionality to the information comprising the at least
one of paper and electronic paper as it is being copied, and
applying multiple processes to a single virtual copy; at least
one client module presenting the information comprising the
at least one of paper and electronic paper as it is being copied,
and information related to at least one of the input and output
functions; and at least one server module communicable with
said at least one input, output, client, and process modules and
external applications, and capable of dynamically combining
the external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer information man
agement system into an external application via one of run
ning the computer information management system, as an
external service and embedding the computer information
management system as an embedded service.

In one embodiment, the server module includes at least one
server module application programmer interface (API). IN

20 one embodiment, the server module application programmer
interface (API) comprises the COM-based interfaces: at least
one modules object maintaining a first list of available input,
output, and process modules; at least one program object
maintaining a second list of currently selected input, output,

25 and process modules; at least one document object maintain
ing information regarding a current document being copied;
at least one system management method object used to ini
tiate, cancel, and reset said computer information manage
ment system; and at least one system management event

30 object used to provide feedback to the Client Module.
In one embodiment, a computer information management

system includes at least one of an electronic image, graphics
and document management system capable of transmitting at
least one of an electronic image, electronic graphics and

35 electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer information management system
comprises: a first capability to integrate an image using soft-

40 ware so that the image gets seamlessly replicated into at least
one of other devices and applications, and via the Internet; a
second capability to integrate electronic images into existing
applications without the need to modify the destination appli
cation; an interface comprising a software application that

45 enables copying images between physical devices, applica
tions, and the Internet using a single "GO" operation; and a
third capability of adding at least one of electronic document
and paper processing with a single programming step.

A computer information management system capable of
50 managing and transmitting at least one of an electronic image,

electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer information management system

55 includes at least one storage storing at least one of a common
and universal interface protocol for interfacing and commu
nicating; and at least one processor responsively connectable
to said at least one storage, and implementing the at least one
common and universal interface protocol as a software appli-

60 cation for interfacing and communicating with the plurality
of external destinations including the one or more of the
external devices and applications.

In one embodiment, a computer readable tangible medium
stores instructions for implementing a process driven by a

65 computer implemented on at least one of an electronic image,
graphics and document management system capable of man
aging and transmitting at least one of an electronic image,

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 56 of 92

US 7,477,410 Bl
21 22

cation; interfacing via a software application enabling copy
ing images between physical devices, applications, and the
Internet using a single "GO" operation; and adding at least
one of electronic document and paper processing with a
single programming step.

In one embodiment, a server method includes initiating,
canceling, and resetting said computer information manage
ment system; maintaining a registry containing a list of said
input, output, and process modules that can be used in said

electronic graphics and electronic document to a plurality of
external destinations including at least one of an external
device and application at least one of locally and via the
Internet. The instructions control the computer to perform the
process of: storing at least one of a common and universal
interface protocol for interfacing and communicating in at
least one storage; and implementing the at least one of com
mon and universal interface protocol as a software applica
tion via at least one processor for interfacing and communi
cating with the plurality of external destinations including the
at least one external device and application.

10 computer information management system, said list being
read on startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client, pro
cess and server modules; maintaining said input, output, and
process modules currently being used for a current computer

In one embodiment, a computer information management
system includes at least one of an electronic image, graphics
and document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer information management system
includes a single function copy operation linking devices, 20

applications and the Internet including at least one a go opera
tion, a single function paper copy between devices and soft
ware applications, and a single function paper copy between
software applications and devices; a one step programming
method to add paper support to electronic business processes
including at least one of a one step method of supporting
paper within electronic business process application option
ally including legacy systems with no or minimal reprogram
ming of the electronic business process application, a method
of recreating a module oriented copier in software; and a
copier interface implemented as software application includ
ing at least one of a virtual copier interface method of pre
senting to a user an operation of at least one of copying files
and electronic images, at least one of to and from, at least one

15 information management system copy operation in a program
object, and saving the currently active modules in a process
template file; and maintaining information regarding a cur
rent file being copied, and saving the information in a docu-
ment template file.

A computer data management system includes at least one
of an electronic image, graphics and document management
system capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a plu
rality of external destinations including one or more of exter-

25 nal devices and applications. The computer data management
system is responsively connectable at least one oflocally and
via the Internet, and includes at least one memory storing a
plurality of interface protocols for interfacing and communi
eating, and at least one processor responsively connectable to

30 the at least one memory. The processor implements at least
one interface protocol as a software application for interfac
ing and communicating with the plurality of external desti
nations including the one or more of the external devices and
applications.

of digital imaging devices and software applications, in a 35

substantially single step, and presenting users with direct
access to at least one of tutorial and options from a main
application window.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scarmer. In
one embodiment, the computer data management system
includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at

40 least one of other devices and applications, and via the Inter
net. In one embodiment, the computer data management sys
tem includes the capability to integrate the electronic images
into a destination application without the need to modify the

In one embodiment, a server module includes enable vir
tual copy operation means for initiating, canceling, and reset
ting said computer information management system; main
tain list of available module means for maintaining a registry
containing a list of said input, output, and process modules
that can be used in said computer information management
system, said list being read on startup, and maintaining 45

another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain
currently active modules means for maintaining said input,
output, and process modules currently being used for a cur
rent computer information management system copy opera
tion in a program object, and saving the currently active
modules in a process template file; and maintain complete
document information means for maintaining information
regarding a current file being copied, and saving the informa
tion in a document template file.

destination application.
In one embodiment, the computer data management sys-

tem includes an optional interface that enables copying
images between physical devices, applications, and the Inter
net using a single "GO" operation. In one embodiment, the
computer data management system includes the optional

50 capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, the software application includes one
or more of: at least one input module managing data compris
ing at least one of paper and electronic paper input to the

55 computer data management system, and managing at least
one imaging device to input the data through at least one of a
scanner and a digital copier, and managing the electronic
paper from at least one third-party software applications; at
least one output module managing the data output from the

In one embodiment, a computer information management
method includes at least one of an electronic image, graphics
and document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises the steps of integrating an
image using software so that the image gets seamlessly rep
licated into at least one of other devices and applications, and
via the Internet; integrating electronic images into existing
applications without the need to modify the destination appli-

60 computer data management system, managing at least one
imaging device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier, and
managing the output of the data to the third-party software
application; at least one process module applying at least one

65 data processing to the data comprising the at least one of the
paper and the electronic paper as it is being copied, applying
additional functionality including at least one of workflow

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 57 of 92

US 7,477,410 Bl
23

and processing functionality to the data comprising the at
least one of paper and electronic paper as it is being copied,
and applying multiple processes to a single virtual copy; at
least one client module presenting the data comprising the at
least one of paper and electronic paper as it is being copied,
and information related to at least one of the input and output
functions; and at least one server module communicable with
said at least one input, output, client, and process modules and
external applications, and capable of dynamically combining
the external applications with at least one of digital capturing
devices and digital imaging devices.

24
A computer data management system capable of managing

and transmitting at least one of an electronic image, electronic
graphics and electronic document to a plurality of external
destinations including one or more of external devices and
applications at least one of locally and via the Internet. The
computer data management system includes at least one
memory storing at least one of a common and universal inter
face protocol for interfacing and communicating; and at least
one data processor responsively connectable to said at least

10 one memory, and implementing the at least one common and
universal interface protocol as a software application for
interfacing and communicating with the plurality of external
destinations including the one or more of the external devices

In one embodiment, one or more of the external devices
and applications integrates the computer data management
system into an external application via at least one of running
the computer data management system, as an external service 15

and embedding the computer data management system as an
embedded service.

and applications.
In one embodiment, a computer readable tangible medium

stores instructions for implementing a process driven by a
computer implemented on at least one of an electronic image,
graphics and document management system capable of man
aging and transmitting at least one of an electronic image,

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management sys
tem; maintain list of available module means for maintaining
a registry containing a list of said input, output, and process
modules that can be used in said computer data management
system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain
currently active modules means for maintaining said input,
output, and process modules currently being used for a cur
rent computer data management system copy operation in a
program object, and saving the currently active modules in a
process template file; and maintain complete document infor
mation means for maintaining information regarding a cur
rent file being copied, and saving the information in a docu
ment template file.

In one embodiment, the server module includes at least one
server module application programmer interface (API). In
one embodiment, the server module application programmer
interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object maintain
ing a first list of available input, output, and process modules;
at least one program object maintaining a second list of cur
rently selected input, output, and process modules; at least
one document object maintaining information regarding a
current document being copied; at least one system manage
ment method object used to initiate, cancel, and reset said
computer data management system; and at least one system
management event object used to provide feedback to the
Client Module.

In one embodiment, a computer data management system
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management system comprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the Inter
net; a second capability to integrate electronic images into
existing applications without the need to modify the destina
tion application; an interface comprising a software applica
tion that enables copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and a third capability of adding at least one of electronic
document and paper processing with a single progrming
step.

20 electronic graphics and electronic document to a plurality of
external destinations including at least one of an external
device and application at least one of locally and via the
Internet. The instructions control the computer to perform the
process of: storing at least one of a common and universal

25 interface protocol for interfacing and communicating in at
least one memory; and implementing the at least one of com
mon and universal interface protocol interfacing and commu
nicating with the plurality of external destinations.

In one embodiment, a computer data management system
30 includes at least one of an electronic image, graphics and

document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications

35 responsively connectable at least one of locally and via the
Internet. The computer data management system includes
one or more of: a single function copy operation linking
devices, applications and the Internet including at least one a
go operation, a single function paper copy between devices

40 and software applications, and a single function paper copy
between software applications and devices; a one step pro
gramming method to add paper support to electronic business
processes including at least one of a one step method of
supporting paper within electronic business process applica-

45 tion optionally including legacy systems with no or minimal
reprogramming of the electronic business process applica
tion, a method of recreating a module oriented copier in
software; and a copier interface implemented as software
application including at least one of a virtual copier interface

50 method of presenting to a user an operation of at least one of
copying files and electronic images, at least one of to and
from, at least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access to at least one of tutorial and options

55 from a main application window.
In one embodiment, a server module includes one or more

of: enable virtual copy operation means for initiating, cancel
ing, and resetting said computer data management system;
maintain list of available module means for maintaining a

60 registry containing a list of said input, output, and process
modules that can be used in said computer data management
system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain

65 currently active modules means for maintaining said input,
output, and process modules currently being used for a cur
rent computer data management-system copy operation in a

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 58 of 92

US 7,477,410 Bl
25

program object, and saving the currently active modules in a
process template file; and maintain complete document infor
mation means for maintaining information regarding a cur
rent file being copied, and saving the information in a docu
ment template file.

26
capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli
cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, the software application includes one
or more of: at least one input module managing data compris
ing at least one of paper and electronic paper input to the
computer data administration system, and managing at least
one imaging device to input the data through at least one of a
scanner and a digital copier, and managing the electronic
paper from at least one third-party software applications; at

10 least one output module managing the data output from the
computer data administration system, managing at least one
imaging device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier, and
managing the output of the data to the third-party software

15 application; at least one process module applying at least one
data processing to the data comprising the at least one of the
paper and the electronic paper as it is being copied, applying
additional functionality including at least one of workflow
and processing functionality to the data comprising the at

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said computer data
management system; maintaining a registry containing a list
of said input, output, and process modules that can be used in
said computer data management system, said list being read

20 least one of paper and electronic paper as it is being copied,
and applying multiple processes to a single virtual copy; at
least one client module presenting the data comprising the at
least one of paper and electronic paper as it is being copied,
and information related to at least one of the input and output

25 functions; and at least one server module communicable with
said at least one input, output, client, and process modules and
external applications, and capable of dynamically combining
the external applications with at least one of digital capturing
devices and digital imaging devices.

30
In one embodiment, one or more of the external devices

and applications integrates the computer data administration
system into an external application via at least one of running
the computer data administration system, as an external ser-

on startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client, pro
cess and server modules; maintaining said input, output, and
process modules currently being used for a current computer
data management system copy operation in a program object,
and saving the currently active modules in a process template
file; and maintaining information regarding a current file
being copied, and saving the information in a document tem
plate file.

35 vice and embedding the computer data administration system
as an embedded service.

A computer data administration system includes at least
one of an electronic image, graphics and document adminis
tration system capable of transmitting at least one of an elec-

40
tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications. The computer data admin
istration system is responsively connectable at least one of
locally and via the Internet, and includes at least one memory

45
storing a plurality of interface protocols for interfacing and
commnnicating, and at least one processor responsively con
nectable to the at least one memory. The processor imple
ments at least one interface protocol as a software application
for interfacing and commnnicating with the plurality of exter-

50
nal destinations including the one or more of the external
devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data administration system 55
includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at
least one of other devices and applications, and via the Inter
net. In one embodiment, the computer data administration
system includes the capability to integrate the electronic 60
images into a destination application without the need to
modifY the destination application.

In one embodiment, the computer data administration sys
tem includes an optional interface that enables copying
images between physical devices, applications, and the Inter- 65

net using a single "GO" operation. In one embodiment, the
computer data administration system includes the optional

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data administration
system; maintain list of available module means for maintain
ing a registry containing a list of said input, output, and
process modules that can be used in said computer data
administration system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main
taining said input, output, and process modules currently
being used for a current computer data administration system
copy operation in a program object, and saving the currently
active modules in a process template file; and maintain com
plete document information means for maintaining informa
tion regarding a current file being copied, and saving the
information in a document template file.

In one embodiment, the server module includes at least one
server module application programmer interface (API). In
one embodiment, the server module application programmer
interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object maintain
ing a first list of available input, output, and process modules;
at least one program object maintaining a second list of cur
rently selected input, output, and process modules; at least
one document object maintaining information regarding a
current document being copied; at least one system adminis
tration method object used to initiate, cancel, and reset said
computer data administration system; and at least one system
administration event object used to provide feedback to the
Client Module.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 59 of 92

US 7,477,410 Bl
27

In one embodiment, a computer data administration sys
tem includes at least one of an electronic image, graphics and
document administration system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data administration system comprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at 10

least one of other devices and applications, and via the Inter
net; a second capability to integrate electronic images into
existing applications without the need to modify the destina
tion application; an interface comprising a software applica
tion that enables copying images between physical devices, 15

applications, and the Internet using a single "GO" operation;
and a third capability of adding at least one of electronic
document and paper processing with a single progrannning
step.

A computer data administration system capable of manag- 20

ing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data administration system includes at 25

least one memory storing at least one of a common and
universal interface protocol for interfacing and communicat
ing; and at least one data processor responsively connectable
to said at least one memory, and implementing the at least one
common and universal interface protocol as a software appli- 30

cation for interfacing and communicating with the plurality
of external destinations including the one or more of the
external devices and applications.

In one embodiment, a computer readable tangible medium
stores instructions for implementing a process driven by a 35

computer implemented on at least one of an electronic image,
graphics and document administration system capable of
managing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including at least one of an external 40

device and application at least one of locally and via the
Internet. The instructions control the computer to perform the
process of: storing at least one of a common and universal
interface protocol for interfacing and communicating in at
least one memory; and implementing the at least one of com- 45

mon and universal interface protocol interfacing and commu
nicating with the plurality of external destinations.

In one embodiment, a computer data administration sys
tem includes at least one of an electronic image, graphics and
document administration system capable of transmitting at 50

least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data administration system includes 55

one or more of: a single function copy operation linking
devices, applications and the Internet including at least one a
go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step pro- 60

gramming method to add paper support to electronic business
processes including at least one of a one step method of
supporting paper within electronic business process applica
tion optionally including legacy systems with no or minimal
reprogramming of the electronic business process applica- 65

tion, a method of recreating a module oriented copier in
software; and a copier interface implemented as software

28
application including at least one of a virtual copier interface
method of presenting to a user an operation of at least one of
copying files and electronic images, at least one of to and
from, at least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access to at least one of tutorial and options
from a main application window.

In one embodiment, a server module includes one or more
of: enable virtual copy operation means for initiating, cancel
ing, and resetting said computer data administration system;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said computer data administra
tion system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain
currently active modules means for maintaining said input,
output, and process modules currently being used for a cur
rent computer data administration system copy operation in a
program object, and saving the currently active modules in a
process template file; and maintain complete document infor
mation means for maintaining information regarding a cur
rent file being copied, and saving the information in a docu
ment template file.

In one embodiment, a computer data administration
method includes at least one of an electronic image, graphics
and document administration system capable of transmitting
at least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modifY
the destination application; interfacing via a software appli
cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said computer data
administration system; maintaining a registry containing a
list of said input, output, and process modules that can be used
in said computer data administration system, said list being
read on startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client, pro
cess and server modules; maintaining said input, output, and
process modules currently being used for a current computer
data administration system copy operation in a program
object, and saving the currently active modules in a process
template file; and maintaining information regarding a cur
rent file being copied, and saving the information in a docu
ment template file.

A workstation data management system includes at least
one of an electronic image, graphics and document manage
ment system capable of transmitting at least one of an elec
tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications. The workstation data man
agement system is responsively connectable at least one of
locally and via the Internet, and includes at least one memory
storing a plurality of interface protocols for interfacing and
communicating, and at least one processor responsively con
nectable to the at least one memory. The processor imple
ments at least one interface protocol as a software application

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 60 of 92

US 7,477,410 Bl
29

for interfacing and connnunicating with the plurality of exter
nal destinations including the one or more of the external
devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the workstation data management system
includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at
least one of other devices and applications, and via the Inter
net. In one embodiment, the workstation data management 10

system includes the capability to integrate the electronic
images into a destination application without the need to
modifY the destination application.

30
plete document information means for maintaining informa
tion regarding a current file being copied, and saving the
information in a document template file.

In one embodiment, the server module includes at least one
server module application progrannner interface (API). In
one embodiment, the server module application progrannner
interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object maintain-
ing a first list of available input, output, and process modules;
at least one program object maintaining a second list of cur
rently selected input, output, and process modules; at least
one document object maintaining information regarding a
current document being copied; at least one system manage
ment method object used to initiate, cancel, and reset said
workstation data management system; and at least one system
management event object used to provide feedback to the
Client Module.

In one embodiment, a workstation data management sys
tem includes at least one of an electronic image, graphics and

In one embodiment, the workstation data management sys
tem includes an optional interface that enables copying 15

images between physical devices, applications, and the Inter
net using a single "GO" operation. In one embodiment, the
workstation data management system includes the optional
capability of adding at least one of electronic document and
paper processing with a single progrming step. 20 document management system capable of transmitting at

least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications

In one embodiment, the software application includes one
or more of: at least one input module managing data compris
ing at least one of paper and electronic paper input to the
workstation data management system, and managing at least
one imaging device to input the data through at least one of a 25

scanner and a digital copier, and managing the electronic
paper from at least one third-party software applications; at
least one output module managing the data output from the
workstation data management system, managing at least one
imaging device to output the data to at least one of a standard 30

Windows printer, an image printer, and a digital copier, and
managing the output of the data to the third-party software
application; at least one process module applying at least one
data processing to the data comprising the at least one of the
paper and the electronic paper as it is being copied, applying 35

additional functionality including at least one of workflow
and processing functionality to the data comprising the at
least one of paper and electronic paper as it is being copied,
and applying multiple processes to a single virtual copy; at
least one client module presenting the data comprising the at 40

least one of paper and electronic paper as it is being copied,
and information related to at least one of the input and output
functions; and at least one server module connnunicable with
said at least one input, output, client, and process modules and
external applications, and capable of dynamically combining 45

the external applications with at least one of digital capturing
devices and digital imaging devices.

responsively connectable at least one of locally and via the
Internet. The workstation data management system com
prises one or more of: a first capability to integrate an image
using software so that the image gets seamlessly replicated
into at least one of other devices and applications, and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single "GO"
operation; and a third capability of adding at least one of
electronic document and paper processing with a single pro
grannning step.

A workstation data management system capable of man-
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The workstation data management system includes
at least one memory storing at least one of a connnon and
universal interface protocol for interfacing and connnunicat
ing; and at least one data processor responsively connectable
to said at least one memory, and implementing the at least one

In one embodiment, one or more of the external devices
and applications integrates the workstation data management
system into an external application via at least one of running so
the workstation data management system, as an external ser
vice and embedding the workstation data management sys
tem as an embedded service.

connnon and universal interface protocol as a software appli
cation for interfacing and connnunicating with the plurality
of external destinations including the one or more of the
external devices and applications.

In one embodiment, a workstation readable tangible
medium stores instructions for implementing a process
driven by a workstation implemented on at least one of an
electronic image, graphics and document management sys-In one embodiment, the server module includes one or

more of: enable virtual copy operation means for initiating,
canceling, and resetting said workstation data management
system; maintain list of available module means for maintain
ing a registry containing a list of said input, output, and
process modules that can be used in said workstation data
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and server
modules; maintain currently active modules means for main
taining said input, output, and process modules currently
being used for a current workstation data management system
copy operation in a program object, and saving the currently
active modules in a process template file; and maintain com-

55 tern capable of managing and transmitting at least one of an
electronic image, electronic graphics and electronic docu
ment to a plurality of external destinations including at least
one of an external device and application at least one of
locally and via the Internet. The instructions control the work-

60 station to perform the process of: storing at least one of a
connnon and universal interface protocol for interfacing and
connnunicating in at least one memory; and implementing
the at least one of connnon and universal interface protocol
interfacing and connnunicating with the plurality of external

65 destinations.
In one embodiment, a workstation data management sys

tem includes at least one of an electronic image, graphics and

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 61 of 92

US 7,477,410 Bl
31

document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The workstation data management system includes
one or more of: a single function copy operation linking
devices, applications and the Internet including at least one a
go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step pro
gramming method to add paper support to electronic business
processes including at least one of a one step method of
supporting paper within electronic business process applica
tion optionally including legacy systems with no or minimal
reprogramming of the electronic business process applica
tion, a method of recreating a module oriented copier in
software; and a copier interface implemented as software
application including at least one of a virtual copier interface
method of presenting to a user an operation of at least one of
copying files and electronic images, at least one of to and
from, at least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access to at least one of tutorial and options
from a main application window.

In one embodiment, a server module includes one or more
of: enable virtual copy operation means for initiating, cancel
ing, and resetting said workstation data management system;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said workstation data manage
ment system, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain
currently active modules means for maintaining said input,
output, and process modules currently being used for a cur
rent workstation data management system copy operation in
a program object, and saving the currently active modules in
a process template file; and maintain complete document
information means for maintaining information regarding a
current file being copied, and saving the information in a
document template file.

In one embodiment, a workstation data management
method includes at least one of an electronic image, graphics
and document management system capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli
cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said workstation data
management system; maintaining a registry containing a list
of said input, output, and process modules that can be used in
said workstation data management system, said list being
read on startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client, pro
cess and server modules; maintaining said input, output, and

32
process modules currently being used for a current worksta
tion data management system copy operation in a program
object, and saving the currently active modules in a process
template file; and maintaining information regarding a cur
rent file being copied, and saving the information in a docu
ment template file.

A computer data management apparatus includes at least
one of an electronic image, graphics and document manage
ment apparatus capable of transmitting at least one of an

10 electronic image, electronic graphics and electronic docu
ment to a plurality of external destinations including one or
more of external devices and applications. The computer data
management apparatus is responsively connectable at least
one of locally and via the Internet, and includes at least one

15 memory storing a plurality of interface protocols for interfac
ing and communicating, and at least one processor respon
sively connectable to the at least one memory. The processor
implements at least one interface protocol as a software appli
cation for interfacing and communicating with the plurality

20 of external destinations including the one or more of the
external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scarmer. In
one embodiment, the computer data management apparatus

25 includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at
least one of other devices and applications, and via the Inter
net. In one embodiment, the computer data management
apparatus includes the capability to integrate the electronic

30 images into a destination application without the need to
modifY the destination application.

In one embodiment, the computer data management appa
ratus includes an optional interface that enables copying
images between physical devices, applications, and the Inter-

35 net using a single "GO" operation. In one embodiment, the
computer data management apparatus includes the optional
capability of adding at least one of electronic document and
paper processing with a single programming step.

In one embodiment, the software application includes one
40 or more of: at least one input module managing data compris

ing at least one of paper and electronic paper input to the
computer data management apparatus, and managing at least
one imaging device to input the data through at least one of a
scanner and a digital copier, and managing the electronic

45 paper from at least one third-party software applications; at
least one output module managing the data output from the
computer data management apparatus, managing at least one
imaging device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier, and

50 managing the output of the data to the third-party software
application; at least one process module applying at least one
data processing to the data comprising the at least one of the
paper and the electronic paper as it is being copied, applying
additional functionality including at least one of workflow

55 and processing functionality to the data comprising the at
least one of paper and electronic paper as it is being copied,
and applying multiple processes to a single virtual copy; at
least one client module presenting the data comprising the at
least one of paper and electronic paper as it is being copied,

60 and information related to at least one of the input and output
functions; and at least one server module communicable with
said at least one input, output, client, and process modules and
external applications, and capable of dynamically combining
the external applications with at least one of digital capturing

65 devices and digital imaging devices.
In one embodiment, one or more of the external devices

and applications integrates the computer data management

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 62 of 92

US 7,477,410 Bl
33

apparatus into an external application via at least one of
running the computer data management apparatus, as an
external service and embedding the computer data manage
ment apparatus as an embedded service.

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
apparatus; maintain list of available module means for main
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data man
agement apparatus, said list being read on startup, and main
taining another copy of said list in a modules object accessible
by said input, output, client, process and server modules;
maintain currently active modules means for maintaining said
input, output, and process modules currently being used for a
current computer data management apparatus copy operation
in a program object, and saving the currently active modules
in a process template file; and maintain complete document
information means for maintaining information regarding a
current file being copied, and saving the information in a
document template file.

In one embodiment, the server module includes at least one
server module application programmer interface (API). In
one embodiment, the server module application programmer
interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object maintain
ing a first list of available input, output, and process modules;
at least one program object maintaining a second list of cur
rently selected input, output, and process modules; at least
one document object maintaining information regarding a
current document being copied; at least one apparatus man
agement method object used to initiate, cancel, and reset said
computer data management apparatus; and at least one appa
ratus management event object used to provide feedback to
the Client Module.

In one embodiment, a computer data management appara
tus includes at least one of an electronic image, graphics and
document management apparatus capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management apparatus com
prises one or more of: a first capability to integrate an image
using software so that the image gets seamlessly replicated
into at least one of other devices and applications, and via the
Internet; a second capability to integrate electronic images
into existing applications without the need to modify the
destination application; an interface comprising a software
application that enables copying images between physical
devices, applications, and the Internet using a single "GO"
operation; and a third capability of adding at least one of
electronic document and paper processing with a single pro
gramming step.

A computer data management apparatus capable of man
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data management apparatus includes
at least one memory storing at least one of a common and
universal interface protocol for interfacing and communicat
ing; and at least one data processor responsively connectable
to said at least one memory, and implementing the at least one
common and universal interface protocol as a software appli
cation for interfacing and communicating with the plurality

34
of external destinations including the one or more of the
external devices and applications.

In one embodiment, a computer readable tangible medium
stores instructions for implementing a process driven by a
computer implemented on at least one of an electronic image,
graphics and document management apparatus capable of
managing and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including at least one of an external

10 device and application at least one of locally and via the
Internet. The instructions control the computer to perform the
process of: storing at least one of a common and universal
interface protocol for interfacing and communicating in at
least one memory; and implementing the at least one of com-

15 mon and universal interface protocol interfacing and commu
nicating with the plurality of external destinations.

In one embodiment, a computer data management appara
tus includes at least one of an electronic image, graphics and
document management apparatus capable of transmitting at

20 least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management apparatus includes

25 one or more of: a single function copy operation linking
devices, applications and the Internet including at least one a
go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step pro-

30 gramming method to add paper support to electronic business
processes including at least one of a one step method of
supporting paper within electronic business process applica
tion optionally including legacy apparatus with no or minimal
reprogramming of the electronic business process applica-

35 tion, a method of recreating a module oriented copier in
software; and a copier interface implemented as software
application including at least one of a virtual copier interface
method of presenting to a user an operation of at least one of
copying files and electronic images, at least one of to and

40 from, at least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access to at least one of tutorial and options
from a main application window.

In one embodiment, a server module includes one or more
45 of: enable virtual copy operation means for initiating, cancel

ing, and resetting said computer data management apparatus;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said computer data management

50 apparatus, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain
currently active modules means for maintaining said input,
output, and process modules currently being used for a cur-

55 rent computer data management apparatus copy operation in
a program object, and saving the currently active modules in
a process template file; and maintain complete document
information means for maintaining information regarding a
current file being copied, and saving the information in a

60 document template file.
In one embodiment, a computer data management method

includes at least one of an electronic image, graphics and
document management apparatus capable of transmitting at
least one of an electronic image, electronic graphics and

65 electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 63 of 92

US 7,477,410 Bl
35 36

managing the output of the data to the third-party software
application; at least one process module applying at least one
data processing to the data comprising the at least one of the
paper and the electronic paper as it is being copied, applying
additional functionality including at least one of workflow
and processing functionality to the data comprising the at
least one of paper and electronic paper as it is being copied,
and applying multiple processes to a single virtual copy; at
least one client module presenting the data comprising the at

Internet. The method comprises one or more of the steps of
integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli
cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes one or more
of: initiating, canceling, and resetting said computer data
management apparatus; maintaining a registry containing a
list of said input, output, and process modules that can be used
in said computer data management apparatus, said list being
read on startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client, pro
cess and server modules; maintaining said input, output, and
process modules currently being used for a current computer
data management apparatus copy operation in a program
object, and saving the currently active modules in a process
template file; and maintaining information regarding a cur
rent file being copied, and saving the information in a docu
ment template file.

10 least one of paper and electronic paper as it is being copied,
and information related to at least one of the input and output
functions; and at least one server module communicable with
said at least one input, output, client, and process modules and
external applications, and capable of dynamically combining

15 the external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data management
device into an external application via at least one of running

20 the computer data management device, as an external service
and embedding the computer data management device as an
embedded service.

A computer data management device includes at least one 25

of an electronic image, graphics and document management
device capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a plu
rality of external destinations including one or more of exter
nal devices and applications. The computer data management 30

device is responsively connectable at least one oflocally and
via the Internet, and includes at least one memory storing a
plurality of interface procedures for communicating and
communicating, and at least one processor responsively con
nectable to the at least one memory. The processor imple- 35

ments at least one interface procedure as a software applica
tion for communicating and communicating with the
plurality of external destinations including the one or more of
the external devices and applications.

In one embodiment, the external devices and applications 40

include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data management device
includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at
least one of other devices and applications, and via the Inter- 45

net. In one embodiment, the computer data management
device includes the capability to integrate the electronic
images into a destination application without the need to
modifY the destination application.

In one embodiment, the computer data management device 50

includes an optional interface that enables copying images
between physical devices, applications, and the Internet using
a single "GO" action. In one embodiment, the computer data
management device includes the optional capability of add
ing at least one of electronic document and paper processing 55

with a single programming step.
In one embodiment, the software application includes one

or more of: at least one input module managing data compris
ing at least one of paper and electronic paper input to the
computer data management device, and managing at least one 60

imaging device to input the data through at least one of a
scanner and a digital copier, and managing the electronic
paper from at least one third-party software applications; at
least one output module managing the data output from the
computer data management device, managing at least one 65

imaging device to output the data to at least one of a standard
Windows printer, an image printer, and a digital copier, and

In one embodiment, the server module includes one or
more of: enable virtual copy action means for initiating, can
celing, and resetting said computer data management device;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process
modules that can be used in said computer data management
device, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain
currently active modules means for maintaining said input,
output, and process modules currently being used for a cur
rent computer data management device copy action in a pro
gram object, and saving the currently active modules in a
process template file; and maintain complete document infor-
mation means for maintaining information regarding a cur
rent file being copied, and saving the information in a docu
ment template file.

In one embodiment, the server module includes at least one
server module application programmer interface (API). In
one embodiment, the server module application programmer
interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object maintain
ing a first list of available input, output, and process modules;
at least one program object maintaining a second list of cur-
rently selected input, output, and process modules; at least
one document object maintaining information regarding a
current document being copied; at least one device manage
ment method object used to initiate, cancel, and reset said
computer data management device; and at least one device
management event object used to provide feedback to the
Client Module.

In one embodiment, a computer data management device
includes at least one of an electronic image, graphics and
document management device capable of transmitting at least
one of an electronic image, electronic graphics and electronic
document to a plurality of external destinations including one
or more of external devices and applications responsively
connectable at least one of locally and via the Internet. The
computer data management device comprises one or more of:
a first capability to integrate an image using software so that
the image gets seamlessly replicated into at least one of other
devices and applications, and via the Internet; a second capa
bility to integrate electronic images into existing applications
without the need to modifY the destination application; an
interface comprising a software application that enables

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 64 of 92

US 7,477,410 Bl
37

copying images between physical devices, applications, and
the Internet using a single "GO" action; and a third capability
of adding at least one of electronic document and paper pro
cessing with a single programming step.

38
output, client, process and server modules; maintain currently
active modules means for maintaining said input, output, and
process modules currently being used for a current computer
data management device copy action in a program object, and
saving the currently active modules in a process template file;
and maintain complete document information means for
maintaining information regarding a current file being cop
ied, and saving the information in a document template file.

In one embodiment, a computer data management method

A computer data management device capable of managing
and transmitting at least one of an electronic image, electronic
graphics and electronic document to a plurality of external
destinations including one or more of external devices and
applications at least one of locally and via the Internet. The
computer data management device includes at least one
memory storing at least one of a common and universal inter
face procedure for communicating and communicating; and
at least one data processor responsively connectable to said at
least one memory, and implementing the at least one common
and universal interface procedure as a software application
for communicating and communicating with the plurality of
external destinations including the one or more of the external
devices and applications.

10 includes at least one of an electronic image, graphics and
document management device capable of transmitting at least
one of an electronic image, electronic graphics and electronic
document to a plurality of external destinations including one
or more of external devices and applications responsively

In one embodiment, a computer readable tangible medium
stores instructions for implementing a process driven by a
computer implemented on at least one of an electronic image,
graphics and document management device capable of man
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including at least one of an external
device and application at least one of locally and via the
Internet. The instructions control the computer to perform the
process of: storing at least one of a common and universal
interface procedure for communicating and communicating
in at least one memory; and implementing the at least one of
common and universal interface procedure communicating
and communicating with the plurality of external destina
tions.

15 connectable at least one of locally and via the Internet. The
method comprises one or more of the steps of integrating an
image using software so that the image gets seamlessly rep
licated into at least one of other devices and applications, and
via the Internet; integrating electronic images into existing

20 applications without the need to modify the destination appli
cation; communicating via a software application enabling
copying images between physical devices, applications, and
the Internet using a single "GO" action; and adding at least
one of electronic document and paper processing with a

25 single programming step.
In one embodiment, a server method includes one or more

of: initiating, canceling, and resetting said computer data
management device; maintaining a registry containing a list
of said input, output, and process modules that can be used in

In one embodiment, a computer data management device
includes at least one of an electronic image, graphics and
document management device capable of transmitting at least
one of an electronic image, electronic graphics and electronic
document to a plurality of external destinations including one

30 said computer data management device, said list being read
on startup, and maintaining another copy of said list in a
modules object accessible by said input, output, client, pro
cess and server modules; maintaining said input, output, and
process modules currently being used for a current computer

35 data management device copy action in a program object, and
saving the currently active modules in a process template file;
and maintaining information regarding a current file being
copied, and saving the information in a document template
file. or more of external devices and applications responsively

connectable at least one of locally and via the Internet. The 40

computer data management device includes one or more of: a
single function copy action linking devices, applications and
the Internet including at least one a go action, a single func
tion paper copy between devices and software applications,
and a single function paper copy between software applica- 45

tions and devices; a one step programming method to add
paper support to electronic business processes including at
least one of a one step method of supporting paper within
electronic business process application optionally including
legacy devices with no or minimal reprogramming of the 50

electronic business process application, a method of recreat
ing a module oriented copier in software; and a copier inter
face implemented as software application including at least
one of a virtual copier interface method of presenting to a user
an action of at least one of copying files and electronic 55

images, at least one of to and from, at least one of digital
imaging devices and software applications, in a substantially
single step, and presenting users with direct access to at least
one of tutorial and options from a main application window.

In one embodiment, a server module includes one or more 60

of: enable virtual copy action means for initiating, canceling,
and resetting said computer data management device; main
tain list of available module means for maintaining a registry
containing a list of said input, output, and process modules
that can be used in said computer data management device, 65

said list being read on startup, and maintaining another copy
of said list in a modules object accessible by said input,

A computer data management method includes at least one
of an electronic image, graphics and document management
method capable of transmitting at least one of an electronic
image, electronic graphics and electronic document to a plu
rality of external destinations including one or more of exter
nal devices and applications. The computer data management
method is connectable at least one of locally and via the
Internet, and accesses at least one memory storing a plurality
of interface protocols for interfacing and communicating, and
at least one processor responsively connectable to the at least
one memory. The processor implements at least one interface
protocol as a software application for interfacing and com-
municating with the plurality of external destinations includ
ing the one or more of the external devices and applications.

In one embodiment, the external devices and applications
include, for example, a printer, a facsimile, and a scanner. In
one embodiment, the computer data management method
includes the capability to integrate an image using software so
that the image gets seamlessly replicated and transmitted to at
least one of other devices and applications, and via the Inter-
net. In one embodiment, the computer data management
method includes the capability to integrate the electronic
images into a destination application without the need to
modifY the destination application.

In one embodiment, the computer data management
method includes an optional interface that enables copying
images between physical devices, applications, and the Inter
net using a single "GO" operation. In one embodiment, the

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 65 of 92

US 7,477,410 Bl
39

computer data management method includes the optional
capability of adding at least one of electronic document and
paper processing with a single progrannning step.

In one embodiment, the software application includes one
or more of: managing data comprising at least one of paper
and electronic paper input to the computer data management
method, and managing at least one imaging device to input
the data through at least one of a scanner and a digital copier,
and managing the electronic paper from at least one third
party software applications; managing the data output from
the computer data management method, managing at least
one imaging device to output the data to at least one of a
standard Windows printer, an image printer, and a digital
copier, and managing the output of the data to the third-party
software application; applying at least one data processing to
the data comprising the at least one of the paper and the
electronic paper as it is being copied, applying additional
functionality including at least one of workflow and process
ing functionality to the data comprising the at least one of
paper and electronic paper as it is being copied, and applying
multiple processes to a single virtual copy; presenting the data
comprising the at least one of paper and electronic paper as it
is being copied, and information related to at least one of the
input and output functions; and communicable with said at
least one input, output, client, and process modules and exter
nal applications, and capable of dynamically combining the
external applications with at least one of digital capturing
devices and digital imaging devices.

In one embodiment, one or more of the external devices
and applications integrates the computer data management
method into an external application via at least one of running
the computer data management method, as an external ser
vice and embedding the computer data management method
as an embedded service.

In one embodiment, the server module includes one or
more of: enable virtual copy operation means for initiating,
canceling, and resetting said computer data management
method; maintain list of available module means for main
taining a registry containing a list of said input, output, and
process modules that can be used in said computer data man
agement method, said list being read on startup, and main
taining another copy of said list in a modules object accessible
by said input, output, client, process and server modules;
maintain currently active modules means for maintaining said
input, output, and process modules currently being used for a
current computer data management method copy operation in
a program object, and saving the currently active modules in
a process template file; and maintain complete document
information means for maintaining information regarding a
current file being copied, and saving the information in a
document template file.

In one embodiment, the server module includes at least one
server module application programmer interface (API). In
one embodiment, the server module application programmer
interface (API) comprises one or more of the following
COM-based interfaces: at least one modules object maintain
ing a first list of available input, output, and process modules;
at least one program object maintaining a second list of cur
rently selected input, output, and process modules; at least
one document object maintaining information regarding a
current document being copied; at least one method manage
ment method object used to initiate, cancel, and reset said
computer data management method; and at least one method
management event object used to provide feedback to the
Client Module.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and

40
document management method capable of transmitting at
least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management method comprises
one or more of: a first capability to integrate an image using
software so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the Inter-

10 net; a second capability to integrate electronic images into
existing applications without the need to modifY the destina
tion application; an interface comprising a software applica
tion that enables copying images between physical devices,
applications, and the Internet using a single "GO" operation;

15 and a third capability of adding at least one of electronic
document and paper processing with a single programming
step.

A computer data management method capable of manag
ing and transmitting at least one of an electronic image,

20 electronic graphics and electronic document to a plurality of
external destinations including one or more of external
devices and applications at least one of locally and via the
Internet. The computer data management method includes at
least one memory storing at least one of a common and

25 universal interface protocol for interfacing and communicat
ing; and at least one data processor responsively connectable
to said at least one memory, and implementing the at least one
common and universal interface protocol as a software appli
cation for interfacing and communicating with the plurality

30 of external destinations including the one or more of the
external devices and applications.

In one embodiment, a computer readable tangible medium
stores instructions for implementing a process driven by a
computer implemented on at least one of an electronic image,

35 graphics and document management method capable of man
aging and transmitting at least one of an electronic image,
electronic graphics and electronic document to a plurality of
external destinations including at least one of an external
device and application at least one of locally and via the

40 Internet. The instructions control the computer to perform the
process of: storing at least one of a common and universal
interface protocol for interfacing and communicating in at
least one memory; and implementing the at least one of com
mon and universal interface protocol interfacing and commu-

45 nicating with the plurality of external destinations.
In one embodiment, a computer data management method

includes at least one of an electronic image, graphics and
document management method capable of transmitting at
least one of an electronic image, electronic graphics and

50 electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The computer data management method includes
one or more of: a single function copy operation linking

55 devices, applications and the Internet including at least one a
go operation, a single function paper copy between devices
and software applications, and a single function paper copy
between software applications and devices; a one step pro
gramming method to add paper support to electronic business

60 processes including at least one of a one step method of
supporting paper within electronic business process applica
tion optionally including legacy methods with no or minimal
reprogramming of the electronic business process applica
tion, a method of recreating a module oriented copier in

65 software; and a copier interface implemented as software
application including at least one of a virtual copier interface
method of presenting to a user an operation of at least one of

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 66 of 92

US 7,477,410 Bl
41

copying files and electronic images, at least one of to and
from, at least one of digital imaging devices and software
applications, in a substantially single step, and presenting
users with direct access to at least one of tutorial and options
from a main application window.

In one embodiment, a server module includes one or more
of: enable virtual copy operation means for initiating, cancel
ing, and resetting said computer data management method;
maintain list of available module means for maintaining a
registry containing a list of said input, output, and process 10

modules that can be used in said computer data management
method, said list being read on startup, and maintaining
another copy of said list in a modules object accessible by said
input, output, client, process and server modules; maintain
currently active modules means for maintaining said input, 15

output, and process modules currently being used for a cur
rent computer data management method copy operation in a
program object, and saving the currently active modules in a
process template file; and maintain complete document infor
mation means for maintaining information regarding a cur- 20

rent file being copied, and saving the information in a docu
ment template file.

In one embodiment, a computer data management method
includes at least one of an electronic image, graphics and
document management method capable of transmitting at 25

least one of an electronic image, electronic graphics and
electronic document to a plurality of external destinations
including one or more of external devices and applications
responsively connectable at least one of locally and via the
Internet. The method comprises one or more of the steps of 30

integrating an image using software so that the image gets
seamlessly replicated into at least one of other devices and
applications, and via the Internet; integrating electronic
images into existing applications without the need to modify
the destination application; interfacing via a software appli- 35

cation enabling copying images between physical devices,
applications, and the Internet using a single "GO" operation;
and adding at least one of electronic document and paper
processing with a single programming step.

In one embodiment, a server method includes one or more 40

of: initiating, canceling, and resetting said computer data
management method; maintaining a registry containing a list
of said input, output, and process modules that can be used in
said computer data management method, said list being read
on startup, and maintaining another copy of said list in a 45

modules object accessible by said input, output, client, pro
cess and server modules; maintaining said input, output, and
process modules currently being used for a current computer
data management method copy operation in a program object,
and saving the currently active modules in a process template 50

file; and maintaining information regarding a current file
being copied, and saving the information in a document tem
plate file.

In accordance with another embodiment of the invention, a
computer readable tangible medium is provided that stores an 55

object thereon, for execution by the computer.
There has thus been outlined, rather broadly, the more

important features of the invention in order that the detailed
description thereof that follows may be better understood,
and in order that the present contribution to the art may be 60

better appreciated. There are, of course, additional features of
the invention that will be described hereinafter and which will
form the subject matter of the claims appended hereto.

In this respect, before explaining at least one embodiment
of the invention in detail, it is to be understood that the 65

invention is not limited in its application to the details of
construction and to the arrangements of the components set

42
forth in the following description or illustrated in the draw
ings. The invention is capable of other embodiments and of
being practiced and carried out in various ways. Also, it is to
be understood that the phraseology and terminology
employed herein are for the purpose of description and should
not be regarded as limiting.

As such, those skilled in the art will appreciate that the
conception, upon which this disclosure is based, may readily
be utilized as a basis for the designing of other structures,
methods and systems for carrying out the several purposes of
the present invention. It is important, therefore, that the
claims be regarded as including such equivalent constructions
insofar as they do not depart from the spirit and scope of the
present invention.

Further, the purpose of the foregoing abstract is to enable
the U.S. Patent and Trademark Office and the public gener
ally, and especially the scientists, engineers and practitioners
in the art who are not familiar with patent or legal terms or
phraseology, to determine quickly from a cursory inspection
the nature and essence of the technical disclosure of the
application. The abstract is neither intended to define the
invention of the application, which is measured by the claims,
nor is it intended to be limiting as to the scope of the invention
in anyway.

These together with other objects of the invention, along
with the various features of novelty which characterize the
invention, are pointed out with particularity in the claims
annexed to and forming a part of this disclosure. For a better
understanding of the invention, its operating advantages and
the specific objects attained by its uses, reference should be
made to the accompanying drawings and descriptive matter in
which there is illustrated preferred embodiments of the inven
tion.

These together with other objects and advantages which
will be subsequently apparent, reside in the details of con
struction and operation as more fully herein described and
claimed, with reference being had to the accompanying draw
ings forming a part hereof wherein like numerals refer to like
elements throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of the placement and/or use of the
computer architecture and/or method of the present inven
tion;

FIG. 2 is an illustration of the component factory migrating
the original "C"-level API from its original state into the
generic interface defined by the topmost layer;

FIG. 3 is an overview of the computer architecture in the
present invention;

FIG. 4 is an illustration of the design of an Object in
accordance with the computer architecture of the present
invention;

FIG. 5 is an illustration of the architecture comprised of
two major parts;

FIG. 6 is an illustration of the architecture of an engine
component including, for example, three layers designed to
migrate the original API of the engine to a consistent COM
interface;

FIG. 7 is a table illustrating the engine management speci
fication with definitions;

FIG. 8 is an illustration of the engine management layer
being divided into three functions/specifications;

FIG. 9 is an illustration of exemplary tables used to drive
the three functions of the engine management layer illustrated
in FIG. 8;

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 67 of 92

US 7,477,410 Bl
43

FIG. 10 is an exemplary table illustrating the engine con
figuration specification with definitions;

FIG. 11 is another exemplary table illustrating the engine
configuration specification;

FIG. 12 is an exemplary table illustrating the engine func
tionality specification with definitions;

FIG. 13 is another exemplary table illustrating the engine
functionality specification;

44
FIG. 34 is an illustration of the VC logic flow;
FIG. 35 is an illustration ofVC updating its Client Module

as well as the results of each Module acting on the document;
FIG. 36 is an illustration of the structure of the Modules

Object;
FIG. 37 is an illustration of the structure of the Program

Object;

FIG. 14 is an illustration of a main central processing unit
for implementing the computer processing in accordance 10

with a computer implemented embodiment of the present

FIG. 38 is an illustration of the internal VDocument map
ping to physical files;

FIG. 39 is an illustration of the VDocument Object;
FIGS. 40 and 41 are illustrations of two events that the

Server Module supports: Error and Status, the Error event
being generated anytime any of the Modules produce an error
condition, and the Status event being generated when infor-

invention;
FIG.15 illustrates a block diagram of the internal hardware

of the computer of FIG. 14;
FIG. 16 is a block diagram of the internal hardware of the

computer of FIG. 15 in accordance with a second embodi
ment;

15 mation needs to be transferred between the lOP or Server
Modules and the Client Module;

FIG. 17 is an illustration of an exemplary memory medium
which can be used with disk drives illustrated in FIGS. 14-16;

FIG. 18 is an illustration of another embodiment of the 20

FIG. 42 is an illustration of a general workflow of the
events that are generated that manage the flow of modules and
user interaction with the Server Module;

FIG. 43 is an illustration of the general logic flow of the
Client Module; component factory migrating the original "C" -level API from

its original state into the generic interface defined by the
topmost layer;

FIG. 19 is an illustration of a distributed environment or
architecture for manually and/or automatically generating
and/or using reusable software components for client server
and/or intranet operating environments;

FIG. 20 is a detailed illustration of the distributed environ-

FIG. 44 is an illustration of the basic Client architecture;
FIG. 45 is an illustration of the API for the Input, Process,

and Output Modules that are made simple so that third-party
25 vendors can create their own custom versions of these mod

ules with relative ease;

mentor architecture for manually and/or automatically gen
erating and/or using reusable software components for client 30

server and/or intranet operating environments;

FIGS. 46-47 are illustrations of the Feedback object used to
communicate between the lOP and the Server Module; and

FIG. 48 is an illustration of the basic lOP architecture.

NOTATIONS AND NOMENCLATURE

FIG. 21 is an illustration of a distributed environment or
architecture for manually and/or automatically generating
and/or using reusable software components for network envi
ronments, such as the Internet;

FIG. 22 is a detailed illustration of the distributed environ
ment or architecture for manually and/or automatically gen
erating and/or using reusable software components in the

The detailed descriptions which follow may be presented
in terms of program procedures executed on a computer or

35 network of computers. These procedural descriptions and
representations are the means used by those skilled in the art
to most effectively convey the substance of their work to
others skilled in the art.

Internet environment;
40

FIGS. 23A-23C are illustrations of the image viewer user
interface and/or functionality associated therewith in accor
dance with the present invention;

A procedure is here, and generally, conceived to be a self
consistent sequence of steps leading to a desired result. These
steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities
take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared and otherwise FIG. 24 is an illustration of a stand-alone and/or distributed

environment or architecture for image viewer in client server
45

and/or intranet operating environments;
manipulated. It proves convenient at times, principally for
reasons of common usage, to refer to these signals as bits,

FIG. 25 is a detailed illustration of a stand-alone and/or
distributed environment or architecture for image viewer in
client server and/or intranet operating environments;

FIG. 26 is an illustration of a stand-alone and/or distributed 50

values, elements, symbols, characters, terms, numbers, or the
like. It should be noted, however, that all of these and similar
terms are to be associated with the appropriate physical quan
tities and are merely convenient labels applied to these quan
tities. environment or architecture for image viewer in network

environments, such as the Internet;
FIG. 27 is a detailed illustration of a stand-alone and/or

distributed environment or architecture for image viewer in
the Internet environment;

FIGS. 28 and 29 are illustrations of the interface of the
Virtual Copier (VC) embodiment of the present invention
with a Go button much like a physical copier;

FIG. 30 is an illustration of the sequence used with Virtual
Copier with just the Power VC portion of the main Virtual
Copier window;

FIG. 31 is an illustration of the five core modules ofVC;
FIG. 32 is an illustration ofVC recognizing that the third

party application is running, and intelligently copying paper
to and from that application;

FIG. 33 is an illustration of a button that can be placed on
a third-party application that launches VC in the background;

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human

55 operator. No such capability of a human operator is necessary,
or desirable in most cases, in any of the operations described
herein which form part of the present invention; the opera
tions are machine operations. Of course, one or more of the
above operations may alternatively be done manually. Useful

60 machines for performing the operation of the present inven
tion include general purpose digital computers or similar
devices.

The present invention also relates to apparatus for perform
ing these operations. This apparatus may be specially con-

65 structed for the required purpose or it may comprise a general
purpose computer as selectively activated or reconfigured by
a computer program stored in the computer. The procedures

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 68 of 92

US 7,477,410 Bl
45

presented herein are not inherently related to a particular
computer or other apparatus. Various general purpose
machines may be used with programs written in accordance
with the teachings herein, or it may prove more convenient to
construct more specialized apparatus to perform the required
method steps. The required structure for a variety of these
machines will appear from the description given.

BEST MODE FOR CARRYING OUT THE
INVENTION

Reference now will be made in detail to the presently
preferred embodiments of the invention. Such embodiments
are provided by way of explanation of the invention, which is
not intended to be limited thereto. In fact, those of ordinary
skill in the art may appreciate upon reading the present speci
fication and viewing the present drawings that various modi
fications and variations can be made. For example, features
illustrated or described as part of one embodiment can be used
on other embodiments to yield a still further embodiment.
Additionally, certain features may be interchanged with simi
lar devices or features not mentioned yet which perform the
same or similar functions. It is therefore intended that such
modifications and variations are included within the totality
of the present invention.

The purpose of the Virtual Copier ("VC") aspect of the
present invention is to enable a typical PC user to add elec
tronic paper processing to their existing business process. VC
is an extension of the concept we understand as copying. In its
simplest form it extends the notion of copying from a process
that involves paper going through a conventional copier
device, to a process that involves paper being scanned from a
device at one location and copied to a device at another
location. In its more sophisticated form, VC can copy paper
from a device at one location directly into a business appli
cation residing on a network or on the Internet, or visa versa.
The VC invention is software that manages paper so that it can
be electronically and seamlessly copied in and out of devices
and business applications (such as Microsoft Office,
Microsoft Exchange, Lotus Notes) with an optional single
step Go operation. The VC software can reside on a PC,
LAN/WAN server, digital device (such as a digital copier), or
on a web server to be accessed over the Internet.

Virtual Copier is designed to solve the corporate paper
problem by enabling existing web-based and client-server
applications to manage paper as part of their solution. Virtual
Copier links the familiar and universal world of paper and
digital devices to web-based and client-server applications.
The result is that the automated business processes become
the primary storage of paper in electronic form. Information
that is typically managed and processed in paper form is
"copied" into the system and managed by the business pro
cesses with which users are accustomed, which is made pos
sible by using Virtual Copier. Simple extensions of Virtual
Copier support seamless electronic outsourcing of paper pro
cessing and archival services over the web.

46
tecture of Virtual Copier offers a simple integration path for
embedding paper processing into its client-server or web
based software solution.

Although managing paper manually is one of the great
problems facing corporations, there has been little innovation
in enabling those workers to eliminate the need to continu
ously work with paper manually. Much of the problem stems
from the complexity of traditional document management
systems, which require days of training and months to

10 become familiar with the system in order to be proficient.
Virtual Copier was designed to be as simple as a copier to
operate, and yet still provide the complete capability of inte
grating paper with existing business applications. By simpli
:tying the interface and underlying software infrastructure,

15 VC can manage paper in electronic form as easily as is cur
rently done in physical form.

VC extends the notion of a copier, which simply replicates
the image of an original document onto another piece of paper
using a single GO or START button, to do a similar operation

20 in software so that the image gets seamlessly replicated into
other devices or applications or the Internet.

An example of this is the actual implementation ofVirtual
Copier as a consumer product. The interface of the consumer
product called Virtual Copier has a Go button much like a

25 physical copier. This GO button can copy paper, whether
physical or electronic, from one device and or application to
another device and/or application.

What makes Virtual Copier as simple as its physical coun
terpart in at least one embodiment is the fact that it replicates

30 the identical motions that a user who is making a copy using
a physical photocopier goes through. When a user photo
copies a document, he/she selects where they want to copy
from (i.e. the sheet feeder), where the user wants to copy to
(i.e. 6 copies collated and stapled) and then presses a GO

35 button to actually carry out the photocopy process. With
Virtual Copier the process feels familiar because the
sequence is the same with just the Power VC portion of the
main Virtual Copier window.

The power ofVirtual Copier is the fact that the From can be
40 a physical device (e.g. digital copier, fax or scanner) or an

application (e.g. Lotus Notes, Microsoft Exchange, the Inter
net, or an electronic filing system). The To can also be a
physical device (e.g. a fax, digital copier, or printer) or an
application (e.g. Lotus Notes, Microsoft Exchange, the Inter-

45 net, or an electronic filing system). Even though paper is
being copied electronically from devices to applications,
from applications to devices, from devices to devices, or from
applications to applications, the user simply has one sequence
to execute: select From, select To, and then press GO. Virtual

50 Copier will accomplish all translations between device and
applications automatically and seamlessly.

Another reason that paper is still a major corporate issue is
that traditional document management systems require that a
company invest in a whole new system just to store electronic

55 images. Although this is the only way that document man
agement systems have been designed and delivered, it is in
fact highly inefficient. Most companies already manage
information about physical documents in some form of soft-

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing Intranet and client-server business processes without 60

any fuss. Whether it is an office clerk that needs to easily copy

ware applications.
For example, accounting systems have long been used to

maintain information about invoices and bills that arrive into
a company from outside sources as physical pieces of paper.
When an invoice arrives, its information is keyed into the
accounting software, where balances are maintained and

a report from a desktop scanner to the company's Intranet
networked copier, or an accounting software integrator that
wants to embed paper processing, Virtual Copier offers a
simple solution. To the office clerk Virtual Copier is a docu
ment imaging application packaged in the familiar setting of
an office copier. To the integrator, the underlying open archi-

65 accounts payable information is coordinated. Yet the original
invoice is stored manually, and every time that a request is
made for a copy of the signed invoice, someone manually

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 69 of 92

US 7,477,410 Bl
47

retrieves the invoice from a physical filing cabinet. Account
ing systems, like most business applications, typically have
no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and difficult to
maintain, and even more difficult to coordinate.

Virtual Copier solves this problem in at least one embodi
ment by copying paper directly into the existing accounting
system. Simply adding a To item in the Virtual Copier win
dow enables a user to copy paper directly into the appropriate 10

accounting record of the existing accounting system. This
requires no retraining (users who are trained on the account
ing system will still use the accounting system in the same
way), requires no document management system (the elec
tronic copy of the document is actually being maintained by 15

the accounting system itself), there is no coordination
between two systems (Virtual Copier embeds the invoice with
the appropriate accounting record), and it is simple (one Go
button).

What is true with regard to the example above of an 20

accounting system is true of most other business applications.
The power ofVirtual Copier is that it can turn an information
system into a document management system by adding sup
port for electronic paper directly into the existing business
application, whether it is a client, server-based, or web-based 25

system.
Virtual Copier enables corporations to perform sophisti

cated document imaging with their existing Web-based and
client-server applications through a user interface that is as
familiar as the office copier. Virtual Copier can be used out- 30

of-the-box as a standalone application to copy, scan, fax, or
print images using existing digital devices within corporate
environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into Web
based and client server applications, such as ERP or account- 35

ing systems, to eliminate paper from existing business pro
cesses and legacy applications. Virtual Copier can also be
used to support seamless access to document image process
ing and archival over the web since, in at least one embodi
ment, the VC interface is implemented as a software applica- 40

tion.
VC is architected as an application that delivers end-user

functionality while remaining open to third-parties exten
sions. For example, VC can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The 45

only difference is that VC does not distinguish between elec
tronic and physical paper.

To accommodate third-party extensions, VC is divided into
five essential modules. Each module is a counterpart to an
aspect that is found on a conventional copier. Based on the 50

modular design ofVC, each aspect ofVC can be indepen
dently extended, offering much greater flexibility than con
ventional copiers.

The five core modules ofVC illustrated in are:
Input Module-The Input Module manages paper or elec- 55

tronic paper entering VC. This module manages imaging
devices to input paper through scanners, MFPs, or the new
breed of digital copiers. The Input Module also manages
reading electronic paper from third-party or proprietary
applications. The counterpart to VC's Input Module on a 60

conventional copier is the scanner subsystem.
Output Module-The Output Module manages paper or

electronic paper exiting VC. Like the Input Module, this
module manages imaging devices to output paper to standard
Windows printers, specialty image printers, MFPs, or the new 65

breed of digital copiers. The Output Module also manages
writing electronic paper to third-party or proprietary applica-

48
tions. The counterpart to VC's Output Module on a conven
tional copier is the printer or fax subsystem.

Process Module-The Process Module applies processing
to the electronic paper as it is being copied. Examples of a
process are OCR and ICR. The Process Module can also
apply non-imaging functionality as well, such as workflow or
other relevant tie-ins to the electronic paper as it is being
copied. One of the advantages ofVC over conventional co pi
ers is that multiple processes can be applied to a single virtual
copy. The counterpart to VC's Process Module on a conven
tional copier is the controller.

Client Module-The Client Module presents the elec
tronic paper as it is being copied, and any relevant informa
tion related to the input or output functions. For example, if
the Output Module is directed to a printer, then the Client
Module might present the finishing capabilities; if the Output
Module is directed to Goldmine, then the Client Module
might present the target contact record to which the document
is being copied. The counterpart to VC's Client Module on a
conventional copier is the panel.

Server Module-Unlike conventional copiers, VC's
Server Module is a unique subsystem that can communicate
with the other modules as well as third-party applications.
The Server Module is what makes VC a far more powerful
concept than simply an application that can control a scanner
and a printer to mimic a copier. The Server Module can be
used to combine third-party applications with the new breed
of digital imaging devices to create unique and custom virtual
copier solutions. A virtual copier can be created with VC by
combining a scanner with a printer; or by combining a scan
ner with an application; or by combing an application with an
image printer. In each case VC is dynamically creating a
custom virtual copier, with a complete understanding of how
paper flows from the source to its destination. There is no
counterpart to VC' s Server Module on a conventional copier.

One of the primary design goals ofVC is to make it simple
to integrate VC with third-party applications. There are two
options to integrating VC into a third-party application: run
ning VC as an external service, or embedding VC as an
underlying service.

VC is in one embodiment and optionally a standalone
application that enables a user to scan (copy) paper from a
device to a third-party application, and to print (copy) the
reference of an image document from a third-party applica
tion to a printing device. VC does not require the third-party
application to be aware that VC is operating. Rather, VC
recognizes that the third-party application is running, and it
intelligently copies paper to and from that application.

In this scenario the user is interacting with VC's Client
Module in order to execute a copy operation to and from the
third-party application. There does not have to be any changes
made to the third-party application, not even to its interface, in
order for VC to operate. The user ofVC only knows that to
copy to and from the third-party application, a custom Input
and Output Module must be selected, and the Go button is
pressed.

In order to support copying to and from a third-party appli
cation, VC must be able to support extensions that understand
each third-party application. This is accomplished through
the Input and Output Modules. The Client, Server, and even
Process Modules remain independent across third-party
applications. However, in order to support outputting to a
third-party application, an Output Module is developed that is
unique to that third-party application. Likewise, an Input
Module is developed that is unique to a third-party applica
tion in order to support reading images from that application.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 70 of 92

US 7,477,410 Bl
49

It is the optional Input and Output Modules that render VC
extendable. For each third-party application there is a unique
pair of Input and Output Modules that understand the third
party application, and how to copy images to and from that
application. Each Input and Output Module registers itself to
the Windows registry so that the Server Module knows how to
find them. In this way Virtual Copier can grow indefinitely, to
support any number of third-party applications.

50
challenge of partially or substantially recreating the compo
nent design and formulating effective implementation deci
Sions.

One would expect the translating a "C" -level API from its
native state into a component would require human-level
intelligence. This is mainly because "C"-level APis have
virtually no constraints as to how they can be implemented.
This means that there are an infinity variations of APis, which
can only be managed by human-level intelligence. While this

10 point is true, I have determined that the appropriate solution
starts at the other side of the equation, which is the component
itself.

The significant point is that the Input and Output Modules
have their own interface, and can be developed independently
from any other module. As long as the Input and Output
Module conform to the API specified in this document it will
plug-and-play with VC. VC will be able to mix and match the
custom Input and Output Module with its standard and other 15

custom Input and Output Modules.

My solution starts out with a definition of a component that
can sustain the feature/function requirements of any API. In
other words, the interface of a generic component can be
defined such that the features and functions of virtually any
API can be re-implemented within its bounds. The two known
end-points are the "C"-level API that started with, and the
component interface that represents any set of features/func-

A third-party application can also use the services ofVC
without its user interface. That is, a third-party application
can embed VC' s functionality and provide its own interface to
its functionality. For example, rather than have VC as a sepa
rate application, a special button can be placed on a third
party application that launches VC in the background.

20 tions on the other side.
I have also determined that one solution for creating a

computer architecture and process for implementing a com
ponent factory is to create a well-definedmulti-tiered systems
architecture for a component and to automate, substantially

VC is designed so that the Server Module can run indepen
dently from the Client Module. All the core functionality,
including communicating with the Input, Output, and Process
Modules, are performed directly by the Server Module. The
Client Module is generally simply an interface to the Server
Module. Therefore, all the services of the Server Module can
be made available in the background to a third-party applica
tion without the need for an interface. The third-party appli
cation can in fact become the user's interface to VC.

25 automate, or manually expedite from its native state through
the various tiers of the systems architecture resulting in a
standardized or substantially standardized component.
Advantageously, this solution is not based on making human
level intelligent decisions on how to translate a _C'-leve!API

In order to support VC operating in the background a
third-party application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in VC, support COM
based interfaces for simple and direct support from all major
Windows development environments.

30 into a component. Rather, by starting with a well-defined
systems architecture that is multi -tiered, a series of incremen
tal steps that migrates a C-leve! API from one tier within the
systems architecture to the next may be performed, and which
are facilitated using the architecture and/ or process described

35 herein.

The purpose of the computer architecture and process
described herein is to create a component factory that can 40
automatically generate reusable software components from
sophisticated core software technologies. Many, if not most,
core software technologies, such as OCR (Optical Character
Recognition) or barcode recognition, are designed and imple
mented using a "C"-language API (Application Program 45
Interface). The technology is often complex, requiring
months of trial-and-error to correctly develop application
systems using the technology. While there are millions of
Intranet developers and power-PC users who are capable of
assembling component-based systems, I have determined 50
that there are relatively few "C" programmers (estimated at
less than 100,000) who can learn and implement application
software with these complex _C'-level API's. It is therefore
desirable to develop software tools for automatically gener
ating reusable software components from core software tech- 55
nologies thus making these software technologies available to
a much larger user base.

Since I have determined that there is no structure or format
for implementing "C"-level API's, the ability to automati
cally transform a unique API into a standard component 60

would seem impossible since that would take a nearly-human
level of intelligence. To date, the only way, I am aware, to
create a component out of an existing API is to have an
existing progrmer in the field do the work for each API.
Humans can intelligently analyze an API and create a com- 65

ponent based on intelligent decisions tempered by experi
ence. The challenge of creating a component factory is the

Advantageously, each incremental step is not a major one,
but in sequence the entire series of steps will result in a usable
component. Since each step of migration is not a major one,
the chances of automating these steps is significantly higher
and the likelihood of being able to create the component
factory becomes more feasible.

The fundamental building blocks of the computer architec
ture and process are twofold:
1) To define a systems architecture that describes in detail

how to implement a component from a C-leve! API
2) To create a component factory by automating, substantially

automating, or manually expediting the migration of a
C-leve! API from one tier within the architecture to the
next.

The building blocks are the keys or important to actually
making the component factory feasible.

Significantly, the computer architecture and processes
described herein have application to the Intranet and docu
ment market marketplace. Corporations are embracing inter
net computing technologies to create enterprise-level Intra
nets and Extranets. Using standard browser technologies,
corporations and government entities are rapidly adopting the
internet computing model and are developing enterprise
applications by assembling standard Microsoft specified
Active X components. These are not "C" programmers; rather
they are typical power PC users. Further availability of reus
able components would only fuel this development.

The general outline for creating a component factory is
described below in detail. It is important to note that auto
matically, substantially automatically, or manually building a
component is neither obvious nor guaranteed. As will be

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 71 of 92

US 7,477,410 Bl
51

described below in detail, automating or substantially auto
mating the building of a component consists of automating
individual steps that comprise the component architecture.
However, in today's application environment, any amount of
automation will dramatically increase the efficiencies of
building a component.

The computer architecture is designed for managing a
diverse set of independent core technologies ("engines")
using a single consistent framework. The architecture bal
ances two seemingly opposing requirements: the need to
provide a single consistent interface to many different
engines with the ability to access the unique features of each
engine.

The benefit of the architecture is that it enables a company
to rapidly "wrap" a sophisticated technology so that other
high-level developers can easily learn and implement the core
technology. The computer architecture is therefore a middle
ware or enabling technology, as illustrated in FIG. 1.

As illustrated in FIG. 1, computer architecture 2, described
below in detail, is a middle layer between high level developer
programs 4 (such as C-leve! APis, or other programs having
similar characteristics) and are technology/component
engines 6 (such as OCR, bar code recognition, and other
components having similar characteristics).

Another benefit of the architecture is that it provides a
high-level specification for a consistent interface to any core
technology. Once a high-level developer learns the interface
described herein for one engine, that knowledge is easily
transferable to other engines that are implemented using the
architecture. For example, once a high-level developer learns
to use the computer architecture for OCR (Optical Character
Recognition), using the computer architecture for other
engines, such as barcode recognition or forms processing, is
trivial.

52
rently unavailable and would require much effort, if at all
possible, to replace humans in any realistic decision-making
process.

With a fixed architecture that can be used to implement a
"C"-level API as a component (using a programmer), that
same architecture can be used as the basis for the component
factory model. In order to make the component factory, each
step of the architecture needs to be designed to facilitate
automation or manually expedited. In other words, I have

10 determined that automating/expediting the process of taking
the original "C" -level API and migrating it to a Levell layer,
and then a Level 1 to a Level 2, and then a Level 2 to a Level
3 layer, and so on, the component has been implemented
automatically, or more efficiently manually. The component

15 factory is therefore a sum of the ability to automate migrating
the "C"-level API from one layer to the next within a well
defined architecture for implementing components.

As illustrated in FIG. 2, the component factory 10 migrates
the original "C" -level API 12 from its original state into the

20 generic interface 8 defined by the topmost layer. The first
feature that can be demonstrated is that there is a topmost
layer 8 that can define a component interface that can repre
sent the features/functions of most core technologies. The
component factory 10 migrates the "C"-level API 12 to the

25 topmost levelS. Doing this in one large step would be impos
sible since the "C"-level API has a near-infinite variety of
styles. However, the architecture advantageously has enough
well-defined and well-structured layers for implementing the
topmost component interface, for creating the component

30 factory.
A simplified overview of the architecture is illustrated in

FIG. 3. In FIG. 3, the component interface 8 sits on top of an
Object Manager 14 that communicates with individual
objects e.g., 16, 18, 20. These objects 16, 18, 20 represent

35 specific core technologies that are represented as "C"-level
APis. The design of Objectl, Object2, ... ObjectN is illus
trated in FIG. 4.

In summary, the architecture and process described herein
is at once a framework for rapidly wrapping sophisticated
technologies into high-level components, as well as a frame
work for high-level developers to communicate with a diverse
set of engines. The creating of a component factory is based 40

on the fact that the architecture defines a clear path for "wrap
ping" any C-leve! API into a component using simple struc
tures and many rote steps. This process is currently being
done in an inefficient manner by a programmer in the field.

45

A component factory can be created by automating the
process of migrating the original "C" -level API 12 from its
original state to the Layer !-Engine Management tier 26,
and then from the state to Layer 2 Engine configuration tier
24, and so on up the Engine Functions layer 22. These layers
will be further described below.

The computer architecture is implemented, for example, as
The method described herein for creating a component

factory creates a well-defined multi-tiered architecture for a
component and automates, substantially automates, or manu
ally expedites (hereinafter "automates") the process of
migrating a "C"-API from its native state through the various
tiers of the architecture resulting in a standardized compo
nent.

Advantageously, the method described herein does not
base the component factory on making human-level intelli
gent decisions on how to translate a "C"-level API into a
component. Rather, by creating a well-defined architecture
described below that is multi-tiered, the method is a series of
incremental steps that need to be taken to migrate the "C"
level API from one tier within the architecture to the next. In

a standard COM component, as anActiveX control; the speci
fications designed by Microsoft, published in the technical
literature, and incorporated herein by reference. ActiveX con
trol (COM) support is currently available within any

50 Microsoft 32-bit Windows operating environment. ActiveX
controls are supported by all OLE-based applications, includ
ing all of Microsoft's end-user products (e.g., Microsoft
Office, Word, Access, Powerpoint, Access), the main Internet
Browsers (Microsoft's Internet Explorer and Netscape's

55 Navigator-the latter with an add-in product and by 4Q97
directly), most other name-brand end-user Windows products
(e.g., Lotus Notes), and all major development environments
(e.g., Microsoft Visual Basic and Visual C++, Delphi, Bor-

this way each incremental step is not a major one, but in 60
sequence the entire series of steps will result in a component.

land C++, Power Builder). By implementing the architecture
as, for example, an ActiveX control, complex technologies
can be programmed by virtually any Windows or Intranet user

Since each step of migration is not a major one, the chances
for automating these steps is significantly higher and the
likelihood of being able to create the component factory
becomes feasible. This approach is in fact what makes the
method cost-effective, since the alternative approach, i.e.,
computer-generated human-level decision making, is cur-

or developer. Of course, other component specifications may
also be used.

Although the architecture has been implemented as a
65 COM-based technology with C++ as the language of choice,

the architecture can be implemented in many other languages
(e.g. Java) and distributed architectures (e.g. CORBA).

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 72 of 92

US 7,477,410 Bl
53

Every engine, such as a text retrieval or an OCR (Optical
Character Recognition) engine, has a unique interface. This
interface is generally a "C" -level API (Application Program
Interface). Inmost cases, the learning curve for understanding
and integrating a new engine can be a one man-month to
several man-years and generally requires highly experienced
"C" programmers. The purpose of the architecture is to define
a clear infrastructure within which any core can be rapidly
"wrapped" so that users and developers can have easy access
to these core technologies.

In addition to defining the infrastructure for engines to be
accessible to typical users, the architecture also defines how

10

to migrate an engine from its native state to the prescribed
interface. In other words, the architecture goes beyond simply
defining the framework for wrapping engines, it also defines 15

the specific steps for wrapping these engines.

54
engine object component is implemented, the Object Man
ager understands and can therefore communicate with it.

Each engine component consists of, for example, three
layers that are designed to migrate the original API of the
engine to a consistent COM interface. As illustrated in FIG. 6,
the Object Manager 14 communicates with the topmost layer
22 of the object component 16, 18, 20 which is the defined
interface of object component.

Each layer is described below in two parts. The first part is
the prescribed COM interface for communicating with the
engine object component. The second part describes a spe
cific path for automating building the layer. By providing an
outline for automating building each layer, the overall engine
object component can be automatically, substantially auto
matically or manually expedited and generated.

Layer !-Engine Management 26

The first layer in the object component architecture is
designed to deal with the fundamental features of an engine.
This includes the ability to load and unload the standard or
commercially available via, for example, MicroSoft Corpo
ration, engine Dynamic Link Libraries (DLLs) into memory,
as well as the ability to consistently deal with errors. This is

The architecture consists of a hierarchical series of layers
that take any "C"-levelAPI from its unique state to one that is
standard and consistent. The result is a single, highly-inte
grated object component that contains and manages any type 20

of engine that can be programmed regardless of the nature and
subject of the core technology. The architecture therefore not
only defines the goal (e.g., the object component interface)
but also the means of implementing that goal for any type of
engine. 25 the most fundamental layer because it is the essential "wrap

per" layer of an engine. Once this layer is complete all inter
action with the underlying engine is filtered through this
layer. Additional important engine management functions

The architecture is comprised of two major parts as illus
trated in FIG. 5: the Object Manager 14, and the individual
object components 16, 18, 20. The Object Manager 14 in FIG.
5 manages individual object components 16, 18, 20 illus
trated as Object 1, Object 2, etc. The Object Manager 14
communicates with the individual object components 16, 18,
20 using a consistent COM interface.

30
include dynamically accessing a function call of an engine,
and initializing engine settings. All of these engine manage
ment functions are optionally and beneficially table driven to
promote or facilitate access to, and implementation of, engine
management functions. Each object component implements the feature set of an

individual engine by mapping a consistent COM interface to
the "C" -Level API interface of the individual engine that it 35

supports. In this way the Object Manager can consistently
communicate with each engine, using the engine's object
component. Because the COM interface of each object com
ponent is consistent, the Object Manager can interface with
every underlying engine the same way.

The Layer 1 specification is summarized in FIG. 7 that
describes the IEngineManagement COM interface. The pur
pose of the IEngineManagement interface is to transparently
load and unload an engine to and from memory. I have deter
mined that this is often the core feature that is incorrectly

40 implemented and a cause for hard-to-find bugs. This layer
may be generated manually by a developer who is familiar
with the architecture as outlined herein in an expedited man
ner or automatically as described below in detail.

The features of the architecture include:
1) definition of consistent COM interfaces for individual

object components that represent diverse technologies;
2) a prescribed process for migrating any engine to the

defined consistent COM interface; and/or
3) a predefined Object Manager that automatically manages

the individual object components.
When implemented, for example, as an ActiveX control,

the architecture also yields an umbrella control that can be
used by a high-level programmer to program and manage
numerous sophisticated technologies in a plug-and-play envi
ronment. In order to facilitate the discussion of the architec
ture itself it is best to start with the architecture of the engine
object component and then describe the Object Manager.
Since the Object Manager is directly dependent on the engine
object components, an understanding of the latter will assist
in the description of the former.

Engine Object Component-16, 18, 20

Layer 1 can be precisely defined in generic terms, and is
45 therefore the simplest layer to likely be automatically, sub

stantially automatically, or easily manually generated. A
sample or example of actual code that can be used to imple
ment this layer is described below. As long the process and/or
code for implementing Layer 1 can be generically defined,

50 that is engine and technology independent, then the process of
generating the generic code for each new engine is expedited
either manually or automatically.

The premise for automating any level is to start with as few
pieces of information as possible. For the Engine Manage-

55 ment layer I have assumed that nothing more than the set of
DLLs that implement the engine functionality are known.
Given this information, I have determined that I will need to
implement:

60
Loading and unloading the engine from memory

The purpose of the engine object is to wrap a specific
engine using a series of layers that convert the engine's
unique interface into a COM interface that is, for example,
specified by the architecture. The architecture not only
defines the consistent COM interface for implementing an 65

engine, it also describes how to implement the interface from
the original "C"-Level API. Once the COM interface of the

Adding error management

We can start, in this example, with a model C++ header file
that defines the Engine Management layer and investigate
how this code can be implemented generically. As mentioned
earlier, if the code to implement this layer can be defined
generically then it can be easily generated, for example,
manually, and/or automatically for any engine.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 73 of 92

US 7,477,410 Bl
55

class SomeEngineObject

{
I IW rapper Functions

private:
FARPROC_SomeFunction;
BOOL SomeFunctionO;
I IEngineManagement

protected:
BOOL GetProcAddress(HINSTANCE,FARPROC&,

LPCTSTR);
BOOL GetProcAddressesO;
BOOL ProcessErrorO;

public:
BOO L ActivateEngine(BOO L Activate);
BOOL IsEngineActivatedO;

}

56
BOO L SomeFunction(arguments)
ASSERT(arguments)
Error Variable= _SomeFunction(arguments);
returnProcessErrorO;

The engine object version of the original function passes
the function call to the original one after completing a series
of assertion tests, and is followed by a series of error detection

10
tests. In this way the original engine function is "wrapped" by
the engine object to manage error detection and correction.

The process of loading an engine can likewise be imple
mented generically.

BOOLLoadDLLsO
15 {

};
20

The IEngineManagement interface is implemented in the

BOOLbReturn=TRUE;
HINSTANCEt_hLib;
CStringt_ModuleName;
POSITIONpos;
pos=m_Modules.GetStartPositionO;
if(pos=NULL) C++ class as the public methods: ActivateEngineO and IsEn

gineActivatedO.
The first step of implementing the Engine Management

layer 20 is to wrap each original engine function within a
25

class-defined function that represents the original. For
example, if there is an original function called SomeFunc
tionO, then the engine object should have a corresponding
SomeFunctionO method. The engine object version can then
add standard engine and error management code so that any

30
layers above have automatic error detection, correction, and
reporting.

An example of generic code that maps an original function
call to the original function is as follows:

BOOL GetProcAddress(HINSTANCE hLib, 35

FARPROC&Proc,LPCTSTR

ProcName)

{
Proc=: :GetProcAddress(hLib,ProcName)
if(!Proc)
{

40

}

{
SetiMAGinEError(NOMODULESDEFINED);
return FALSE;

while(pos&&bReturn)
{
m_Modules.GetNextAssoc(pos,t ModuleName,t hLib);
if(t_hLib!=NULL)

continue;
t_hLib=: :LoadLibrary(t_ModuleName);
if(t_hLib=NULL)
{

}

SetiMAGinEError(CANTLOADMODULE,t_Module-
Name);

FreeDLLsO;
bReturn=FALSE;
break;

m_Modules.SetAt(t_ModuleName, t_hLib);
}

returnbReturn; SetiMAGmEError(LOADENGNEFUNCTIONSER
ROR, 45 }

ProcName);
return FALSE;
}
return TRUE;
Given the original function name, the GetProcAddress can

map the original function to one that is defined by the engine
object. Using the engine object C++ header file described
above, the SomeFunctionO method is mapped to the original
engine function using the following line of code:

(GetProcAddress(hLib, SomeFunction, "SomeFunc
tion");

To map all the function calls within the original engine
DLLs just requires cycling through each function call and
mapping it to the engine object counterpart. Since Windows
contains facilities that enables access to all the functions
within a DLL, a simple loop may be used. The hLib module
is derived from the DLL name, which, as mentioned at the
start, is the one piece of information we are given.

The LoadDLLs function is a generic implementation of a
function that loops through the names ofDLLs that are pro
vided (in the form of the m_Modules variable), and cycles
through each one loading it into memory using the Windows

50 LoadLibraryO function. A similar engine object function can
be implemented to remove these DLLs from memory.

The present invention further divides the engine manage
ment layer into three functions, as illustrated in FIG. 8. The
first function is loading and unloading 124 of the core or

55 engine technology. The second function for the engine man
agement layer 26 is dynamically linking procedures or func
tion calls, or hooking the desired engine functionality into the
procedures of the core technology 126, including, for
example, initializing and setting up engine settings. The third

60 function is initializing the engine itself 128, which is essen
tially engine management. Once these three functions are
performed in Ievell, anything in the core technology is acces
sible.

What is more complex is to define a generic implementa- 65

tion of the engine object version of the original function. This
may be described in code as follows:

Advantageously, the present invention utilizes tables to
drive each of these three functions described above, and as
illustrated in FIG. 9. Each of the tables of files, for example
tables 130, 136, 140, are filled in with the appropriate data or

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 74 of 92

US 7,477,410 Bl
57

information. I have discovered that if the above three func
tions are set up or implemented using tables, that the core
technology may be effectively and efficiently described. That
is, the use of tables is a very effective and simple method of
describing an engine for use in engine management, engine
loading/unloading and engine procedure linking. For
example, it is similar to indicating or providing the raw data of
that engine, the list of the engine functions, and the list of the
engine dynamic link libraries (DLLs) for engine manage
ment.

The files or tables contain the logic or executable of the
engine. Accordingly, all that is needed is a list of the engine
functions 132, a list of the file of the engine executable code
or DLLs 138, and a list of the engine settings 142. Using the
tables with the above information, the engine may be auto
matically loaded and unloaded, initialized, and/or dynami
cally hooked into the necessary functions. Accordingly, the
process of generating level 1 for engine management may
advantageously be automated. The specific algorithms used
for the engine management layer are described in the Appen
dix.

In summary, for the Engine Management layer the follow
ing pieces may be automated, substantially automated, and/or
manually expedited.

Loading and unloading the engine DLLs (provided into
and out of memory

Mapping original functions to engine object counterparts
Adding general error detection and correction
Determining and matching arguments and return values for

mapping the original functions to their engine object
counterparts. In order to add assertion and error detec
tion and correction, the original function must be
wrapped and called from within the engine object ver
sion of the original function.

Managing error feedback. All APis have their own way of
providing error feedback. Since one of the goals of the
Engine Management layer is to generically manage
error detection, correction, and feedback, it must handle

58
FIG. 11 is another exemplary table illustrating the engine

configuration specification. Examples include a set setting
function 144, a get setting function 146, a load setting 148, a
save setting 150, an is setting valid function 152, a default
setting 154, and a prompt setting 156.

The get setting 146 and set setting 144 functions retrieve
the value of a particular engine setting, or assign a value to a
particular engine setting, respectively. Each one of the get
setting and set setting functions includes or comprises a table

10 of the settings. The load setting 148 and save setting 150
functions do the similar function as the get setting and set
setting functions, but in persistence. Persistence is defined as
writing values to the disk, for example hard disk, compact
disk, and the like, and retrieves the values from the disk. So as

15 where the get setting and set setting functions assign a value
and/or retrieves the value from local memory, the load and set
setting functions assign the value and retrieve the value of the
setting from disk. The load and set setting functions provide
persistence when the computer system is close down, such

20 that when the computer system will return to the last setting
when it is subsequently reopened.

The default setting function 154 provides the most favor
able value for a given setting. Thus, if no setting is selected,
the system will automatically select default settings. The

25 prompt setting function 156 is what displays to the user all the
various settings. Advantageously, the present invention gen
erates the skeletal structure of each table automatically. In
addition, since there is a table of settings, the skeletal struc
ture not only generates these functions, but also fills in the

30 settings that need to be assigned. Thus, the engine configura
tion function provides the feature of having a pre-populated
set of options whichrequireparticularvalues to be assigned to
table entries.

Although this architecture advantageously makes it simple
35 for a human to migrate the configuration of an engine appear

into two simple and universally applicable interface points,
doing so automatically requires additional steps. The two
steps to automating this approach are, for example, as fol
lows: all errors identically. However, APis have numerous and

incompatible methods in this case. I have determined 40

that most APis follow one of several distinct mecha-
Determine the configuration methods used by various APis

for configuring the core technology;
Detect the variations for configuring an engine and auto

mating each one separately.
As with Layer !-Engine Management, there exists a finite

nisms for providing error feedback. By creating specific
classes of APis, the process of generating Layer 1 engine
management may be expedited, manually and/or auto
matically.

Layer 2-Engine Configuration 24

45 set of general variations used by developers of core technolo
gies to configure an engine. Although Layer 1 is clearly more
generic in nature, advantageously, Layer 2 also has consider
able consistency. The second layer 24 in the object component architecture is

designed to deal with configuring an engine. This includes the
ability to set any variety of features that are generally associ- 50

ated with the functioning of an engine. The architecture is
designed to meet the challenge of providing a uniform inter
face for dealing with generally any or most engine settings.

Layer 3-Engine Functionality 22
The third layer 22 in the object component architecture is

designed to deal with accessing the actual functionality of the
core engine. For example, for an OCR engine this would be to
OCR an image or a document. For a text retrieval engine this
would be to initiate and retrieve results of a text search.

An exemplary Layer 3 specification can be summarized in
FIG. 12 that describes the IEngineFunction COM interface.
The purpose of the IEngineFunction interface is to provide
the ability to initiate any function supported by an engine. The

The engine configuration layer 24 includes a series of
prefabricated functions that map out the settings stored in the 55

table to the appropriate engine configuration parameters.
Accordingly, all that is needed is to fill in the values for the
table associated with engine configuration. Thus, the engine
object may advantageously come pre-packaged with prede
termined tables populated with predetermined values. 60 simple IEngineFunction interface is capable of managing an

infinite variation of functions. The Layer 2 specification can be summarized in FIG. 10
that describes an exemplary IEngineConfiguration COM
interface. The purpose of the IEngineConfiguration interface
is to provide the ability to set and get the settings of any engine
uniformly. While the Engine Management layer can load and 65

unload engines transparently, this layer configures engines to
operate as required by the user or developer.

The third layer may advantageously be further divided into
many sub-layers that more discretely define the steps neces
sary to execute a function within an API. Since the designer of
an API has infinite variety of possible ways of implementing
a function, creating a tiered architecture to manage this layer
is useful.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 75 of 92

US 7,477,410 Bl
59

An exemplary tiered architecture for the engine function is
illustrated in FIG. 13. As illustrated in FIG. 13, the engine
function or engine processing layer includes four elements.
The engine function layer 22 includes a series of predefined
functions to perform in the perform element 158. For
example, for optical character recognition (OCR), the present
invention uses a set of predefined functions. Alternatively, for
scanning, the present invention includes a separate set of
predefined functions.

Accordingly, there are a series of actions that are per
formed by the engine function layer on a given engine, such as
an OCR engine, a scanning engine, a printing engine and the
like. The engine function layer is designed not to generally go
directly to a specific engine. Rather, the engine function layer
22 will generally interface with the engine management layer
26 and/or the engine configuration layer 24 as needed.

For example, in the course of performing an action and/or
function, the engine function layer interfaces with the engine
configuration layer to possibly modifY settings. For an OCR
engine, the engine function layer fills out a table of OCR
documents as one action that could take place. OCR image is
another action.

The get function results 160 gets the results of the function
stored in a register. The clear function 162 clears all the
registers that contain all the results, in this case its memory.
The feedback event or function 164 provides continuous
feedback, depending on what action takes place. For
example, if an OCR action is being performed, the feedback
function provides the percentage of completion of the OCR
process.

The automation of this layer is accomplished by the fol
lowing functions:

Determine the execution of methods used by various APis
for executing a given function;

Divide this layer into a multi-tiered layer that further facili
tates automation;

Detect the variations of the sub-layers and automate each
one separately.

Although this layer has many more variations than Layer 2,
I have determined that there is a general set of variations used
by developers of APis to implement core functionality.

Thus, the benefit of the component factory is that it can
transform core software technologies that are currently avail
able in "C" -level APis to a limited audience into components
that have a much greater audience.

There are a variety of"C" -level APis that cover the follow
ing categories of functionality that can be better served in the
market as ActiveX controls or other component and used in
conjunction with the architecture and methods described
herein.

Text Retrieval
Data Extraction
Workflow
Storage Management
Each of these categories has several vendors with products

that currently service the market in a limited way because the
technologies are only available as "C"-level APis. Without
the core competency of creating components out of these core
technologies they are limiting their marketability and oppor
tunity for international distribution.

With the proposed component factory users and vendors
can rapidly create components from their original core tech
nology and increase their marketability, competitiveness, and
ultimately their sales.

Further, there are numerous core technologies, such as
text-retrieval and ICR (Intelligent Character Recognition),
that have already been implemented, and are only available as

60
"C" -level APis. Many, if not most, core technologies are first
released exclusively as "C" -level APis. While there are inte
grators and corporations who have the team of technologists
who can integrate these "C" -level APis in-house, most com
panies are looking for component versions that can be imple
mented at a much higher level. Therefore, many of the core
technologies that are only available in a "C" -level API are not
being used due to their inaccessible interface. The benefit of
the component factory is that it can rapidly make available

10 core technologies implemented as "C" APis that would oth
erwise be underutilized or dormant in research labs by con
verting them to high-level components that can be used by
millions of power-PC users.

With the advent of the World Wide Web (WEB) this oppor-
15 tunity has increased exponentially. The WEB is now home to

a vast number of WEB authors with minimal formal training
who can implement HTML pages and build web sites. One of
the fundamental technologies for extending the capability of
the WEB from simple page viewing to interactive and sophis-

20 ticated applications is components. A component extends the
capability of HTML by enabling a WEB author to add core
technology as a pre-packaged technology. Since components
are fundamental to the growth and usability of the WEB,
having a component factor that can translate "C"-level tool-

25 kits into components that are then usable within WEB sites
opens a vast and new worldwide market to these technologies.

FIG. 14 is an illustration of a main central processing unit
for implementing the computer processing in accordance
with a computer implemented embodiment of the present

30 invention. The procedures described above may be presented
in terms of program procedures executed on, for example, a
computer or network of computers.

Viewed externally in FIG. 14, a computer system desig-
35 nated by reference numeral40 has a central processing unit 42

having disk drives 44 and 46. Disk drive indications 44 and 46
are merely symbolic of a number of disk drives which might
be accommodated by the computer system. Typically these
would include a floppy disk drive such as 44, a hard disk drive

40
(not shown externally) and a CD ROM indicated by slot 46.
The number and type of drives varies, typically with different
computer configurations. Disk drives 44 and 46 are in fact
optional, and for space considerations, may easily be omitted
from the computer system used in conjunction with the pro-

45 duction process/apparatus described herein.

The computer also has an optional display 48 upon which
information is displayed. In some situations, a keyboard 50
and a mouse 52 may be provided as input devices to interface
with the central processing unit 42. Then again, for enhanced

50 portability, the keyboard 50 may be either a limited function
keyboard or omitted in its entirety. In addition, mouse 52 may
be a touch pad control device, or a track ball device, or even
omitted in its entirety as well. In addition, the computer
system also optionally includes at least one infrared transmit-

55 ter 76 and/or infrared receiver 78 for either transmitting and/
or receiving infrared signals, as described below.

FIG.15 illustrates a block diagram of the internal hardware
of the computer of FIG. 14. A bus 56 serves as the main
information highway interconnecting the other components

60 of the computer. CPU 58 is the central processing unit of the
system, performing calculations and logic operations
required to execute a program. Read only memory (ROM) 60
and random access memory (RAM) 62 constitute the main
memory of the computer. Disk controller 64 interfaces one or

65 more disk drives to the system bus 56. These disk drives may
be floppy disk drives such as 70, or CD ROM or DVD (digital
video disks) drive such as 66, or internal or external hard

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 76 of 92

US 7,477,410 Bl
61

drives 68. As indicated previously, these various disk drives
and disk controllers are optional devices.

A display interface 72 interfaces display 48 and permits
information from the bus 56 to be displayed on the display 48.
Again as indicated, display 48 is also an optional accessory.
For example, display 48 could be substituted or omitted.
Communication with external devices, for example, the com
ponents of the apparatus described herein, occurs utilizing
communication port 74. For example, optical fibers and/or
electrical cables and/or conductors and/or optical communi- 10

cation (e.g., infrared, and the like) and/or wireless communi
cation (e.g., radio frequency (RF), and the like) can be used as
the transport medium between the external devices and com
munication port 74.

In addition to the standard components of the computer, the 15

computer also optionally includes at least one of infrared
transmitter 76 or infrared receiver 78. Infrared transmitter 76

62
detail in, for example, U.S. Pat. No. 5,163,131; Boxer, A.,
Where Buses Cannot Go, IEEE Spectrum, February 1995, pp.
41-45; and Barroso, L.A. eta!., RPM: A Rapid Prototyping
Engine for Multiprocessor Systems, IEEE Computer Febru
ary 1995, pp. 26-34, all of which are incorporated herein by
reference.

In alternate preferred embodiments, the above-identified
processor, and in particular microprocessing circuit 58, may
be replaced by or combined with any other suitable process
ing circuits, including programmable logic devices, such as
PALs (programmable array logic) and PLAs (programmable
logic arrays). DSPs (digital signal processors), FPGAs (field
programmable gate arrays), ASICs (application specific inte
grated circuits), VLSis (very large scale integrated circuits) or
the like.

FIG. 18 is an illustration of another embodiment of the
component factory migrating the original "C" -level API from
its original state into the generic interface defined by the
topmost layer. This powerful architecture goal is to supply

is utilized when the computer system is used in conjunction
with one or more of the processing components/stations that
transmits/receives data via infrared signal transmission. 20 easy access to all imaging functions that can be performed by

any engine.
The architecture according to this second embodiment,

groups C-leve! toolkits 100 into logical categories, such as
scan, print, display, OCR, cleanup and so on. A single engine
can span multiple categories (e.g., Kofax engine does view/
print/scan). This enables the architecture to deal with the
multitude of engines available in a logical fashion.

FIG. 16 is a block diagram of the internal hardware of the
computer of FIG. 14 in accordance with a second embodi
ment. In FIG. 16, instead of utilizing an infrared transmitter or
infrared receiver, the computer system uses at least one of a
low power radio transmitter 80 and/or a low power radio 25

receiver 82. The low power radio transmitter 80 transmits the
signal for reception by components of the production process,
and receives signals from the components via the low power
radio receiver 82. The low power radio transmitter and/or
receiver 80, 82 are standard devices in industry.

On top of these, a three-level C++ class (or object) 102 is
built for each engine. This object gives uniform access to the

30 engine and to all its unique settings. The three levels do the
following: FIG. 17 is an illustration of an exemplary memory medium

which can be used with disk drives illustrated in FIGS.14-16.
Typically, memory media such as floppy disks, or a CD ROM,
or a digital video disk will contain, for example, a multi-byte
locale for a single byte language and the program information
for controlling the computer to enable the computer to per
form the functions described herein. Alternatively, ROM 60
and/or RAM 62 illustrated in FIGS.15-16 can also be used to
store the program information that is used to instruct the
central processing unit 58 to perform the operations associ
ated with the production process.

Levell of the C++ classes 112 is a protective wrapper for
each function call in the underlying engine. It traps all errors
and provides error management and administration to prevent

35 accidental GPFs or engine crashes.
Think of it as the "condom layer." While providing the

most direct access feasible to the underlying engine and all its
capabilities, Ievell of the C++ class 112 also protects the user

40
from the engine. It manages all engine loading and unloading,
prevents multiple copies of an engine and calls engines auto
matically as needed.

Although processing system 40 is illustrated having a
single processor, a single hard disk drive and a single local
memory, processing system 40 may suitably be equipped
with any multitude or combination of processors or storage
devices. Processing system 40 may, in point of fact, be
replaced by, or combined with, any suitable processing sys
tem operative in accordance with the principles of the present
invention, including sophisticated calculators, and hand-held,
laptop/notebook, mini, mainframe and super computers, as 50

well as processing system network combinations of the same.

The architecture also provides three levels of access: 1. Use
the default engine settings. Benefit: No learning up front.

45
Program knowing nothing other than "OCR gets text out of
there." 2. Prepackage customized engine settings. Set it once
for everyone who uses the program, every time they use the
program. 3. ModifY engine settings at run-time. Let the user
choose the settings.

Conventional processing system architecture is more fully
discussed in Computer Oraganization and Architecture, and
Architecture, by William Stallings, MacMillam Publishing
Co. (3rd ed. 1993); conventional processing system network 55

design is more fully discussed in Data Network Design, by
Darren L. Spohn, McGraw-Hill, Inc. (1993), and conven
tional data communications is more fully discussed in Data
Communications Principles, by R. D. Gitlin, J. F. Hayes and
S. B. Weinstain, Plenum Press (1992) and in The Irwin Hand- 60

hook of Telecommunications, by James Harry Green, Irwin
Professional Publishing (2nd ed. 1992). Each of the foregoing
publications is incorporated herein by reference. Alterna
tively, the hardware configuration may be arranged according
to the multiple instruction multiple data (MIMD) multipro- 65

cessor format for additional computing efficiency. The details
of this form of computer architecture are disclosed in greater

Level2 of the C++ classes 114 bridges the low-level API
calls so they can be used by level3 116 in standardized calls
for each category. And it supplements the engine by providing
additional functionality, such as safely loading and unloading
engines.

Level 3 of the C++ class 116 consists of a standardized set
of calls for all engines in each category. Programmers can
access all the unique functions of each engine in a uniform
way.

Another associated C++ class, called a Visual Class 104,
adds a visual interpretation of each engine. This class man
ages all user interaction with each underlying engine. Like
their lower-level counterparts, the Visual Class consists of
three layers:

Level 1-118 adds any dialogs or other pop-up window
capability that may be lacking in each engine. Examples:
Dialogs to customize the engine settings or, for a recognition
engine, the zone definition settings.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 77 of 92

US 7,477,410 Bl
63

Level2-120 serves two functions: It bridges Ievell dia
logs with the actual Windows window that represents the
control. It also handles all Windows-related error message
presentation.

Level 3-122 manages anything else from the underlying
engine (such as annotations) that needs to appear on the
window. The Visual Class includes engine-specific Windows
dialog boxes that let you customize which engine features you
want to use, as well as any other Windows representation
necessary for a toolkit. (For example, a compression engine 10

has to display the image-the visual class, not the engine,
does the work.)

The Object Manager layer 106, the first horizontal
umbrella, orchestrates the underlying objects. It translates
service requests into a form that the engine objects can under- 15

stand.

64
engine in the form of an engine object component, and the
engine will automatically "plug into" or work with, the object
manager. Thus, the engine object is provided high level
access, making it accessible to many more parties, users, and
the like. When the object manager interface is designed to be
open, any third party, such as an engine manufacturer, can
create their own engine object component that is compatible
with the object manager, the manufacturer can do it.

FIG. 19 is an illustration of a distributed environment or
architecture for manually and/or automatically generating
and/or using reusable software components for client server
and/or intranet operating environments. A very significant
point that is relevant to why the object manager and the engine
object component are independent in the present invention
relates to providing a distributed environment for using the
present invention. Rather than communicate within the same
technology between the object manager and the engine
object, the object manager and the engine object component
communicate with each other in binary mode, via, for

The Windows Manager 108 presents Windows messages
(move window, mouse/scrollbar/toolbox activity) to the
Object Manager. It is written using Microsoft's Foundation
Class (MFC), which makes it easy to support OCXs. (The
OCX is in fact an MFC class.)

At the top, a visual interface 110 presents to the user a set
of visual calls and translates those calls into Windows mes
sages. This layer comprises only 5% of the VBX code, yet it
permits the toolkit to appear as a VBX, OCX or other standard
visual interface.

20 example, standard distributed component object module
(DCOM) communication. As illustrated in FIG. 19, object
manager 14 communicates with engine object component 16,
18, 20 via DCOM specification 166. Other types of compo
nent communication may also be utilized that provide the

25 capability of a distributed component interaction.
Thus, the engine object component and the object manager

can leverage current protocols to not only communicate on
the same machine, but also on different machines such as a
client server and/or intranet and/or Internet environment. The

Accordingly, the present invention provides two main lay
ers, the engine object component layer and the object man
ager layer. By creating these two main layers, the present
invention allows third parties to create their own engine
object component layers so that the third party engine can be
readily compatible and useable by the present invention. In
addition, the present invention is accessible via the Internet.
That is, the present invention is operable over the Internet
using, for example, standard Internet protocols, such as com
ponent object module (COM) communication protocol and
distributed COM (DCOM) protocol.

30 object manager can be placed on one machine, and the engine
object component on another machine and have distributed
processing, what is otherwise called thin client processing,
distributed processing, wide area intranet processing.

What this allows the present invention to do is to put the

In addition, the present invention optionally combines
three layers of functions including the visual interface, the
windows manager and the object manager into one layer
called the object manager. Of course, this combination of
layers is not meant to convey that only these specific layers
must be used, but rather, to be indicative of overall function
ality generally required to implement or execute component
engines. That is, one or more of the above functions may be
incorporated into the object manager layer. The present
invention also advantageously combines the visual classes
and C++ classes into the engine object component to further
standardize and/or provide access to the object manager for
engine object components.

35 object manager on the thin client, who would accept the
request from the user, for example, to OCR something or to
print something. The actual request is handled or processed
by the engine object component which generally resides on
the server. The engine object component contains the horse

40 power, or the processing power to process the request.
The engine object layer is generally located in the same or

substantially same location as where the core technology or
engine itself is being stored. Alternatively, the engine object
layer and the engine may be optionally located in a distributed

45 environment on different machines, servers, and the like.
FIG. 20 is a detailed illustration of the distributed environ-

mentor architecture for manually and/or automatically gen
erating and/or using reusable software components for client
server and/or intranet operating environments. In FIG. 20,

50 client 170 includes object manager layer 172. Client 170
executes the core technology 180, via accessing engine object
layer 178 managed/stored on server 176, and communicated
via server 174.

The present invention optionally uses the standardActiveX
component control supplied, for example, by MicroSoft Cor
poration. ActiveX is a protocol for component communica
tion. The present invention also creates each of the object
manager and the engine component layer as a separate 55

ActiveX. That is, the object manager is its own ActiveX
control, and the engine object is its own ActiveX control.
Thus, the engine object can now run independently from the
object manager. Accordingly, the engine object can operate
without relying necessarily on the concurrent operation of the 60

object manager.
The independent relationship between the engine object

and the object manager means also that the engine object
represents a discrete means of technology. For example, an
engine object can be an OCR technology. This provides sev- 65

era! benefits. First, because the object manager layer is open,
the manufacturer of the OCR technology can wrap their own

Client 182, located on the same server 176 as core technol
ogy 180 and engine object layer 178, may also be used to
execute the core technology 180 via object manager layer
184. In this instance, the client 182 with the object manager
layer 184 is located on the same server 176 as the engine
object layer 178. In addition, since the present invention
utilizes a communication protocol between components, for
example, DCOM, that allows a client to also include both the
engine object component layer and the object manager layer
on the same machine 186, as well as the core technology.

Further, since the object manager is formatted or con
structed of a client technology, the object manager can sit in
a standard browser. This means that anyone that has an Inter
net browser, i.e., anyone that has access to the world wide web

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 78 of 92

US 7,477,410 Bl
65

(WEB) can actually access the core engine technology. Thus,
by structuring the architecture of the present invention as
described herein, users automatically become Internet, intra
net and/or WEB enabled.

66
viewer provides the ability to a user to retain or develop a
specific perspective on viewing a document. One of the fea
tures of the viewer is therefore the ability to change the user's
perspective. For example, the user might be looking at the
same document, as a book, as a film, or as a bounded or
traditional book. This gives the user the ability to relate to the
document in a fashion that they are comfortable with, depend
ing on the content or depending on the user. That is, the image
viewer is like a usable selectable perspective on viewing a

The present invention also transforms the core technology
from essentially client based technology into a client server
and/or a thin client technology. This makes the core technol
ogy high level accessible, thereby transforming any core tech
nology into client server, or hidden client technology. The
browser is located on the client, and the browser leverages the
object manager. Accordingly, the browser optionally contains
the object manager, and the object manager makes requests
over, for example, the Internet, local network, and the like via

10 document in a plurality of ways.
FIG. 23B is an illustration of another user selectable inter-

face for image viewing. In FIG. 23B, user interface 200' for
image viewing includes viewing frame 202', with single
viewing area 204'. Viewing area 204' includes at the top left, a server, to the engine object. The server would be either a

web server or a LAN server. 15 previous page activator 208' and at the top right next page
indicator 212'. Viewing area 204' also includes at the left area
document tools 210', and at the bottom status indicator 214'.
Viewing area 204' also includes at the top, multiple viewing

The present invention also advantageously provides the
ability to have the client and the server, in a distributed envi
ronment as discussed above, or on the same machine locally.
The present invention utilizes the DCOM communication
protocol defining the communication protocol between the 20

object manager and the engine object component. Accord
ingly, since DCOM can work on the same machine as well as
in a distributed environment, DCO M does not necessitate that
the engine object or the object manager component be on two
separate machines.

FIG. 21 is an illustration of a distributed environment or
architecture for manually and/or automatically generating
and/or using reusable software components for network envi
ronments, such as the Internet. As illustrated in FIG. 21,
object manager 14 communicates with engine object compo
nent 16, 18, 20 via DCOM specification and a networking
environment, such as the Internet, intranet, and the like 168.
Other types of component communication may also be uti
lized that provide the capability of a distributed component
interaction over a networking environment.

page area 218, that appears and preferably moves like a film,
and provides viewing of multiple consecutive or non-con
secutive pages. Advantageously, this user interface is select-
able and/or customizable by the user, as illustrated below in
connection with this figure and FIG. 23A and FIG. 23C. FIG.
23C is an illustration of another user selectable interface for

25 image viewing. In FIG. 23C, user interface 20011 for image
viewing includes viewing frame 202 11

, with single viewing
area 204 11

• Viewing area 204 11 includes at the top right, previ
ous page activator 208 11 and at the bottom left next page
indicator 212 11

• Viewing area 204 11 also includes at the left area
30 document tools 210 11

, and at the bottom status indicator214 11
•

Viewing area thus provides a user interface to view a docu
ment that appears like a bound or more traditional book.
Advantageously, this user interface is selectable and/or cus
tomizable by the user, as illustrated below in connection with

35 this figure and FIGS. 23A-23B.
FIG. 22 is a detailed illustration of the distributed environ

ment or architecture for manually and/or automatically gen
erating and/or using reusable software components in the
Internet environment. In FIG. 22, client 170 includes object
manager layer 172. Browser/thin client 170a executes the 40

core technology 180, via accessing engine object layer 178
managed/stored on web server 176a, and communicated via
the Internet 174a.

FIG. 24 is an illustration of a stand-alone and/or distributed
environment or architecture for image viewer in client server
and/or intranet operating environments. The architecture in
FIG. 24 provides the capability to perform the viewer process
off-line. That is, the viewer process 188 provides an added
feature on top of the object manager layer 14. As described
above, object manager layer 14 is essentially an interface, and
the viewer process 188 is an application that leverages the
object manager layer 14.

The advantage of the viewer process 188 being built on the
object manager layer 14, which is built on top of the engine
object layer 16, 18, 20, is that the viewer process can offset its
processing capabilities anywhere in a distributed environ
ment. It can have the processing occur at the local station, on

Browser/thin client 182a, located on the same web server
176a as core technology 180 and engine object layer 178, 45

may also be used to execute the core technology 180 via
object manager layer 184. In this instance, the browser/thin
client 182a with the object manager layer 184 is located on
the same web server 176a as the engine object layer 178. In
addition, since the present invention utilizes a communica
tion protocol between components, for example, DCOM, that
allows a client to also include both the engine object compo
nent layer and the object manager layer on the same machine
186, as well as the core technology.

50 a server, and the like, as described below in detail. Signifi
cantly, the object manager and the engine object component
are independent to provide a distributed environment for
using the present invention. Rather than communicate within
the same technology between the object manager and the

FIGS. 23A-23C are illustrations of the image viewer user
selectable or configurable or programmable interface and/or
functionality associated therewith in accordance with the
present invention. In FIG. 23A, user interface 200 for image
viewing includes viewing frame 202, with dual viewing areas
204, 206. Viewing area 204 includes at the periphery, previ
ous page activator 208, at the top, document tools 210, and at
the bottom status indicator 214. Viewing area 206 includes at
the periphery, next page activator 212, at the top, document
tools 214, and at the bottom status indicator 216.

55 engine object, the object manager and the engine object com
ponent communicate with each other in binary mode, via, for
example, standard distributed component object module
(DCOM) communication.

As illustrated in FIG. 24, object manager 14 communicates
60 with engine object component 16, 18, 20 via DCOM specifi

cation 166. Other types of component communication may
also be utilized that provide the capability of a distributed
component interaction. Object manager 14 is also respec-
tively connectable to viewer process 188.

Advantageously, this user interface is selectable and/or 65

customizable by the user, as illustrated below in connection
with this figure and FIGS. 23B-23C. Significantly, the image

Thus, the engine object component and the object manager
can leverage current protocols to not only communicate on
the same machine, but also on different machines such as a

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 79 of 92

US 7,477,410 Bl
67

client server and/or intranet and/or Internet environment. The
object manager and/or viewer process can be placed on one
machine, and the engine object component on another
machine and have distributed processing, what is otherwise
called thin client processing, distributed processing, wide
area intranet processing.

68
FIG. 26 is an illustration of a stand-alone and/or distributed

environment or architecture for image viewer in network
environments, such as the Internet. As illustrated in FIG. 21,
object manager 14 communicates with engine object compo
nent 16, 18, 20 via DCOM specification and a networking
environment, such as the Internet, intranet, and the like 168.
In addition, object manager layer 14 also advantageously
communications with viewer process 188a. Other types of
component communication may also be utilized that provide

What this allows the present invention to do is to put the
object manager on the thin client, who would accept the
request from the user, for example, to perform the viewer
process. The actual request is handled or processed by the
engine object component which generally resides on the
server. The engine object component contains the horse
power, or the processing power to process the request.

10 the capability of a distributed component interaction over a
networking environment.

The engine object layer is generally located in the same or
substantially same location as where the core technology or 15

engine itself is being stored. Alternatively, the engine object
layer and the engine may be optionally located in a distributed
environment on different machines, servers, and the like.

FIG. 25 is a detailed illustration of a stand-alone and/or

FIG. 27 is a detailed illustration of a stand-alone and/or
distributed environment or architecture for image viewer in
the Internet environment. In FIG. 27, client 170 includes
object manager layer 172. Browser/thin client 170a executes
the core technology 180 and/or viewer process 192a, via
accessing engine object layer 178 managed/stored on web
server 176a, and communicated via the Internet 17 4a. Viewer
process 190 is also optionally available to web server 176a.

Browser/thin client 182a, located on the same web server
176a as core technology 180, viewer process 192a and engine
object layer 178, may also be used to execute the core tech
nology 180 via object manager layer 184. In this instance, the
browser/thin client 182a with the object manager layer 184 is

distributed environment or architecture for image viewer in 20

client server and/or intranet operating environments. In FIG.
25, client 170 includes object manager layer 172 with viewer
process 192. Client 170 executes the core technology 180, via
accessing engine object layer 178 managed/stored on server
176, and communicated via server 174. Viewer process 190 is
also optionally available to either or both servers 174, 176.

Client 182, located on the same server 176 as core technol
ogy 180 and engine object layer 178, may also be used to
execute the core technology 180 and/or viewer process 192
via object manager layer 184. In this instance, the client 182
with the object manager layer 184 is located on the same
server 176 as the engine object layer 178. In addition, since
the present invention utilizes a communication protocol
between components, for example, DCOM, that allows a
client to also include both the engine object component layer, 35

viewer process 194 and the object manager layer on the same
machine 186, as well as the core technology.

25 located on the same web server 176a as the engine object
layer 178. In addition, since the present invention utilizes a
communication protocol between components, for example,
DCOM, that allows a client to also include both the engine
object component layer and the object manager layer on the

30 same machine 186, as well as the core technology and viewer

Further, since the object manager is formatted or con
structed of a client technology, the object manager can sit in

process.
The purpose of the Virtual Copier ("VC") aspect of the

present invention is to enable a typical PC user to add elec
tronic paper processing to their existing business process. VC
is an extension of the concept we understand as copying. In its
simplest form it extends the notion of copying from a process
that involves paper going through a conventional copier
device, to a process that involves paper being scarmed from a
device at one location and copied to a device at another
location. In its more sophisticated form, VC can copy paper
from a device at one location directly into a business appli-
cation residing on a network or on the Internet, or visa versa.
The VC invention is software that manages paper so that it can
be electronically and seamlessly copied in and out of devices

a standard browser. This means that anyone that has an Inter- 40

net browser, i.e., anyone that has access to the world wide web
(WEB) can actually access the core engine technology and/or
viewer process. Thus, by structuring the architecture of the
present invention as described herein, users automatically
become Internet, intranet and/or WEB enabled.

The present invention also transforms the core technology
and/or viewer process from essentially client based technol
ogy into a client server and/or a thin client technology. This
makes the core technology high level and/or viewer process
accessible, thereby transforming any core technology and/or 50

viewer process into client server, or hidden client technology.
The browser is located on the client, and the browser lever
ages the object manager. Accordingly, the browser optionally
contains the object manager, and the object manager makes
requests over, for example, the Internet, local network, and 55

the like via a server, to the engine object. The server would be
either a web server or a LAN server.

45 and business applications (such as Microsoft Office,
Microsoft Exchange, Lotus Notes) with an optional single
step Go operation. The VC software can reside on a PC,
LAN/WAN server, digital device (such as a digital copier), or
on a web server to be accessed over the Internet.

The present invention also advantageously provides the
ability to have the client and the server, in a distributed envi
ronment as discussed above, or on the same machine locally. 60

The present invention utilizes the DCOM communication
protocol defining the communication protocol between the
object manager and the engine object component. Accord
ingly, since DCOM can work on the same machine as well as
in a distributed environment, DCO M does not necessitate that 65

the engine object or the object manager component be on two
separate machines.

Virtual Copier is designed to solve the corporate paper
problem by enabling existing web-based and client-server
applications to manage paper as part of their solution. Virtual
Copier links the familiar and universal world of paper and
digital devices to web-based and client-server applications.
The result is that the automated business processes become
the primary storage of paper in electronic form. Information
that is typically managed and processed in paper form is
"copied" into the system and managed by the business pro
cesses with which users are accustomed, which is made pos
sible by using Virtual Copier. Simple extensions of Virtual
Copier support seamless electronic outsourcing of paper pro-
cessing and archival services over the web.

Virtual Copier is a unique combination of an intuitive
application built on an open component architecture that
delivers a simple innovation: provide paper processing to
existing Intranet and client-server business processes without
any fuss. Whether it is an office clerk that needs to easily copy

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 80 of 92

US 7,477,410 Bl
69

a report from a desktop scanner to the company's Intranet
networked copier, or an accounting software integrator that
wants to embed paper processing, Virtual Copier offers a
simple solution. To the office clerk Virtual Copier is a docu
ment imaging application packaged in the familiar setting of
an office copier. To the integrator, the underlying open archi
tecture of Virtual Copier offers a simple integration path for
embedding paper processing into its client-server or web
based software solution.

70
For example, accounting systems have long been used to

maintain information about invoices and bills that arrive into
a company from outside sources as physical pieces of paper.
When an invoice arrives, its information is keyed into the
accounting software, where balances are maintained and
accounts payable information is coordinated. Yet the original
invoice is stored manually, and every time that a request is
made for a copy of the signed invoice, someone manually
retrieves the invoice from a physical filing cabinet. Account-

Although managing paper manually is one of the great
problems facing corporations, there has been little innovation

10 ing systems, like most business applications, typically have
no way of maintaining an electronic copy of the physical
invoice, and adding a document management system to an
accounting system is cumbersome, costly, and difficult to

in enabling those workers to eliminate the need to continu
ously work with paper manually. Much of the problem stems
from the complexity of traditional document management
systems, which require days of training and months to 15

become familiar with the system in order to be proficient.
Virtual Copier was designed to be as simple as a copier to
operate, and yet still provide the complete capability of inte
grating paper with existing business applications. By simpli
fying the interface and underlying software infrastructure,
VC can manage paper in electronic form as easily as is cur
rently done in physical form.

VC extends the notion of a copier, which simply replicates
the image of an original document onto another piece of paper
using a single GO or START button, to do a similar operation
in software so that the image gets seamlessly replicated into
other devices or applications or the Internet.

An example of this is the actual implementation ofVirtual
Copier as a consumer product. As shown in FIGS. 28 and 29,
the interface of the consumer product called Virtual Copier
has a Go button much like a physical copier. This GO button
can copy paper, whether physical or electronic, from one
device and or application to another device and/or applica
tion.

What makes Virtual Copier as simple as its physical coun-
terpart in at least one embodiment is the fact that it replicates
the identical motions that a user who is making a copy using
a physical photocopier goes through. When a user photo
copies a document, he/she selects where they want to copy
from (i.e. the sheet feeder), where the user wants to copy to
(i.e. 6 copies collated and stapled) and then presses a GO
button to actually carry out the photocopy process. With
Virtual Copier the process feels familiar because the
sequence is the same as illustrated in FIG. 30 with just the
Power VC portion of the main Virtual Copier window.

The power ofVirtual Copier is the fact that the From can be

maintain, and even more difficult to coordinate.
Virtual Copier solves this problem in at least one embodi-

ment by copying paper directly into the existing accounting
system. Simply adding a To item in the Virtual Copier win
dow enables a user to copy paper directly into the appropriate
accounting record of the existing accounting system. This

20 requires no retraining (users who are trained on the account
ing system will still use the accounting system in the same
way), requires no document management system (the elec
tronic copy of the document is actually being maintained by
the accounting system itself), there is no coordination

25 between two systems (Virtual Copier embeds the invoice with
the appropriate accounting record), and it is simple (one Go
button).

What is true with regard to the example above of an
accounting system is true of most other business applications.

30 The power ofVirtual Copier is that it can turn an information
system into a document management system by adding sup
port for electronic paper directly into the existing business
application, whether it is a client, server-based, or web-based

35

system.
Virtual Copier enables corporations to perform sophisti-

cated document imaging with their existing Web-based and
client-server applications through a user interface that is as
familiar as the office copier. Virtual Copier can be used out
of-the-box as a standalone application to copy, scan, fax, or

40 print images using existing digital devices within corporate
environments or across the web. With the extensions, as
described below, Virtual Copier can be integrated into Web
based and client server applications, such as ERP or account
ing systems, to eliminate paper from existing business pro-

45 cesses and legacy applications. Virtual Copier can also be
used to support seamless access to document image process
ing and archival over the web since, in at least one embodi
ment, the VC interface is implemented as a software applica-a physical device (e.g. digital copier, fax or scanner) or an

application (e.g. Lotus Notes, Microsoft Exchange, the Inter
net, or an electronic filing system). The To can also be a 50
physical device (e.g. a fax, digital copier, or printer) or an
application (e.g. Lotus Notes, Microsoft Exchange, the Inter
net, or an electronic filing system). Even though paper is
being copied electronically from devices to applications,
from applications to devices, from devices to devices, or from
applications to applications, the user simply has one sequence

tion.
VC is architected as an application that delivers end-user

functionality while remaining open to third-parties exten
sions. For example, VC can be viewed as a copier. Like a
copier, VC takes paper in, and produces paper going out. The
only difference is that VC does not distinguish between elec-

55 tronic and physical paper.
To accommodate third-party extensions, VC is divided into

five essential modules. Each module is a counterpart to an
aspect that is found on a conventional copier. Based on the
modular design ofVC, each aspect ofVC can be indepen-

to execute: select From, select To, and then press GO. Virtual
Copier will accomplish all translations between device and
applications automatically and seamlessly.

60 dently extended, offering much greater flexibility than con
ventional copiers.

Another reason that paper is still a major corporate issue is
that traditional document management systems require that a
company invest in a whole new system just to store electronic
images. Although this is the only way that document man
agement systems have been designed and delivered, it is in
fact highly inefficient. Most companies already manage 65

information about physical documents in some form of soft
ware applications.

The five core modules ofVC illustrated in FIG. 31 are:
Input Module-The Input Module manages paper or elec

tronic paper entering VC. This module manages imaging
devices to input paper through scarmers, MFPs, or the new
breed of digital copiers. The Input Module also manages
reading electronic paper from third-party or proprietary

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 81 of 92

US 7,477,410 Bl
71

applications. The counterpart to VC's Input Module on a
conventional copier is the scanner subsystem.

72
each third-party application. This is accomplished through
the Input and Output Modules. The Client, Server, and even
Process Modules remain independent across third-party
applications. However, in order to support outputting to a
third-party application, an Output Module is developed that is
unique to that third-party application. Likewise, an Input
Module is developed that is nnique to a third-party applica
tion in order to support reading images from that application.

It is the optional Input and Output Modules that render VC

Output Module-The Output Module manages paper or
electronic paper exiting VC. Like the Input Module, this
module manages imaging devices to output paper to standard
Windows printers, specialty image printers, MFPs, or the new
breed of digital copiers. The Output Module also manages
writing electronic paper to third-party or proprietary applica
tions. The counterpart to VC's Output Module on a conven
tional copier is the printer or fax subsystem.

Process Module-The Process Module applies processing
to the electronic paper as it is being copied. Examples of a
process are OCR and ICR. The Process Module can also
apply non-imaging functionality as well, such as workflow or
other relevant tie-ins to the electronic paper as it is being
copied. One of the advantages ofVC over conventional co pi
ers is that multiple processes can be applied to a single virtual
copy. The counterpart to VC's Process Module on a conven
tional copier is the controller.

10 extendable. For each third-party application there is a unique
pair of Input and Output Modules that understand the third
party application, and how to copy images to and from that
application. Each Input and Output Module registers itself to
the Windows registry so that the Server Module knows how to

15 find them. In this way Virtual Copier can grow indefinitely, to
support any number of third-party applications.

The significant point is that the Input and Output Modules
have their own interface, and can be developed independently
from any other module. As long as the Input and Output

Client Module-The Client Module presents the elec
tronic paper as it is being copied, and any relevant informa
tion related to the input or output functions. For example, if
the Output Module is directed to a printer, then the Client
Module might present the finishing capabilities; if the Output
Module is directed to Goldmine, then the Client Module
might present the target contact record to which the document
is being copied. The counterpart to VC's Client Module on a
conventional copier is the panel.

20 Module conform to the API specified in this document it will
plug-and-play with VC. VC will be able to mix and match the
custom Input and Output Module with its standard and other
custom Input and Output Modules.

A third-party application can also use the services ofVC
25 without its user interface. That is, a third-party application

can embed VC' s functionality and provide its own interface to
its functionality. For example, rather than have VC as a sepa
rate application, a special button can be placed on a third
party application that launches VC in the background as illus-Server Module-Unlike conventional copiers, VC's

Server Module is a unique subsystem that can communicate
with the other modules as well as third-party applications.
The Server Module is what makes VC a far more powerful
concept than simply an application that can control a scanner
and a printer to mimic a copier. The Server Module can be
used to combine third-party applications with the new breed 35

of digital imaging devices to create nnique and custom virtual
copier solutions. A virtual copier can be created with VC by
combining a scanner with a printer; or by combining a scan
ner with an application; or by combing an application with an
image printer. In each case VC is dynamically creating a 40

custom virtual copier, with a complete understanding of how
paper flows from the source to its destination. There is no
counterpart to VC' s Server Module on a conventional copier.

30 trated in FIG. 33.

One of the primary design goals ofVC is to make it simple
to integrate VC with third-party applications. There are two 45

options to integrating VC into a third-party application: run
ning VC as an external service, or embedding VC as an
underlying service.

VC is designed so that the Server Module can run indepen
dently from the Client Module. All the core functionality,
including communicating with the Input, Output, and Process
Modules, are performed directly by the Server Module. The
Client Module is generally simply an interface to the Server
Module. Therefore, all the services of the Server Module can
be made available in the background to a third-party applica
tion without the need for an interface. The third-party appli
cation can in fact become the user's interface to VC.

In order to support VC operating in the background a
third-party application merely has to communicate with the
Server Module directly, as described later in this document.
The Server Module, as all modules in VC, support COM
based interfaces for simple and direct support from all major
Windows development envirouments.

At the heart of VC is the Server Module. A virtual copy
operation can only be initiated using the Server Module. The
Server Module coordinates the activities of the various mod
ules while maintaining the information regarding the current
process and document. It also collects and passes information
from one module to another regarding the document and
process. Events and an API are used to control the modules
and their interaction with each other as well as with the Server

VC is in one embodiment and optionally a standalone
application that enables a user to scan (copy) paper from a 50

device to a third-party application, and to print (copy) the
reference of an image document from a third-party applica
tion to a printing device. VC does not require the third-party
application to be aware that VC is operating. Rather, VC
recognizes that the third-party application is running, and it
intelligently copies paper to and from that application as
illustrated in FIG. 32.

Module. The following are the main functions of the Server
55 Module:

Enable Virtual Copy Operation-The Server Module pro
vides simple methods to initiate, cancel, and reset VC. The
API is designed to imitate the simplicity of using a conven
tional copier.

Maintain List of Available Modules-The Windows regis-
try contains the list of available Input, Output, and Process
Modules that can be used with VC. The Server Modules reads
this list on startup, and maintains it in the Modules object that
can be accessed by the other modules. Although each module

In this scenario the user is interacting with VC's Client
Module in order to execute a copy operation to and from the
third-party application. There does not have to be any changes 60

made to the third-party application, not even to its interface, in
order for VC to operate. The user ofVC only knows that to
copy to and from the third-party application, a custom Input
and Output Module must be selected, and the Go button is
pressed. 65 can read this information directly from the registry, it is pref

erable to use the Modules object. All information regarding
the available modules can be found in the Modules object.

In order to support copying to and from a third-party appli
cation, VC must be able to support extensions that understand

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 82 of 92

US 7,477,410 Bl
73

Maintain the Currently Active Modules-The Server
Module maintains the current Input, Output, and Process
Modules that are being used for the current virtual copy
operation. This is maintained in the Program object. This
information can also be saved to disk in a Process Template
file.

Maintain Complete Document Information-The Server
Module maintains all the information regarding the current
file being copied. This is maintained in the VDocument
object. This information can also be saved to disk in a Docu
ment Template file.

As with other design elements ofVC, the VC logic flow
illustrated in FIG. 34 parallels the basic logic flow of a con
ventional copier. In a conventional copier, paper is pulled into
the copier, processed, and output. Likewise, in VC the Server
Module initiates the Input Module, Process Module, and Out
put Module in that sequence. Unlike a conventional copier
which does not have the ability to update its panel, VC
updates its Client Module as well as the results of each Mod
ule acting on the document as illustrated in FIG. 35.

All actions to create, process, and write images are the
responsibility of the Input, Process, and Output Modules
respectively. The Server Module is a scheduler of activities,
providing the information and initiating the modules at the
appropriate time in the virtual copy operation. The Server
Module manages the other Modules. It does not know about
the internal workings of the modules, nor the contents of the
information being copied. The Server Module API is suffi
ciently rich to maintain all the information necessary for a
basic virtual copy operation.

The Server Module API is divided, for example, into the
following COM-based interfaces:

Modules Object-This object maintains the list of avail-

10

15

20

25

30

able Input, Output, and Process Modules
35

Program Object-This object maintains the currently
selected Input, Output, and Process Modules

VDocument Object-This object maintains the informa
tion regarding the current document that is being copied

VC Methods-These methods are used to initiate, cancel,
andresetVC

VC Events-These events are used to provide feedback to
the Client Module

The purpose of the Modules object is to provide the Client
Module with the full list of available Input, Output, and Pro
cess Modules that is available to the user. The Client Module
can obtain the user-readable names for each module, as well
as its icon and other key information. The Modules object is
primarily used to seed list or combo boxes that provide the
end-user with a choice of modules from which to select.

In a preferred embodiment, the Modules Object has, for
example, the following structure illustrated in FIG. 36, how
ever, alternative structures and/or functionality may option
ally be used for this object and/or other objects used in the

40

45

50

present invention: 55

Name

Type

Format
Description

Sample

Name

Type
Format
Description

Sample

Name

Type
Format
Description

Sample

Name

Type
Format

Description

Sample

Name

Type

Format

Description

Sample

74

-continued

Default

Property; Object of type InputModule, OutputModule, or
ProcessModule
.Default - Read Only
The Default property identifies the default module that the
Server Module will use at startup or if no other module is
identified.
MylnputModule ~ VCopier.InputModules.Default

ID

Property; BSTR
.ID- Read Only
The ID property identifies the Prog!D of a module. The
ProgiD can be used to derive other information about the
module, including its Icon.
ModuleName ~ VCopier.InputModules(1).ID

File

Property; BSTR
.File- Read Only
The File property identifies the full pathname of the
physical file of a module.
FileName ~ VCopier.InputModules(1).File

InputModule, OutputModule, ProcessModule

Object
.InputModule, .OutputModule,
.ProcessModule - Read Only
The InputModule, OutputModule, and ProcessModule are
the individual objects maintains by the InputModules,
OutputModules, and ProcessModules collections
respectively. Each one of these objects has the following
elements:
Name
ID
File
Configure
The Name property is a BSTR that is the user-readable
name of the module. The ID is a BSTR that represents the
Progld of the module. The File property is a BSTR that is
the full pathname of the module. The Configure method
prompts the user with a dialog for configuring that module.
MylnputModule ~ VCopier.InputModules(2)

InputModules, OutputModules, ProcessModules

Collection oflnputModule, OutputModule, and
ProcessModule objects respectively
.InputModules, .OutputModules, .ProcessModules -
Read Only
The InputModules, OutputModules, and ProcessModules
collections maintain the list of available modules for each
category. Each collection maintain the following
information:
InputModule/OutputModule/ProcessModule
Default
The first element is the individual module in the collection
of modules that are available to VC. The Default object is
the default module that VC uses at startup. The Server
Module maintains these collections under the Modules
object.
MylnputModule ~ VCopier.InputModules(2)

Name IsLoaded

Name Configure

Type Method
Format .Configure()
Description The Configure method causes the module to prompt the

user for configuration information. Each module maintains
its own configuration dialog, and therefore may look
different than other modules.

Sample VCopier.InputModules(1).Configure()

60

65

Type Method, Boolean
Format .IsLoaded()
Description The IsLoaded method returns True if the module is

loaded into memory, and False if it is not.
Sample ModuleName ~ Vcopier.InputModules(1).IsLoaded

Name Load

Type Method
Format .Load()

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 83 of 92

US 7,477,410 Bl
75

-continued

Description The Load method manually loads the module into memory.
Once a module is loaded in VC it remains in memory nntil
it is specifically unloaded using the Unload method, or the
program exits.

Sample ModuleName ~ VCopier.InputModules(1).Load

Name Name

Type Property, BSTR
Format .Name- Read Only
Description The Name property identifies the user-readable name of a

module. This name can be used in a list box for a user to
select the module.

Sample ModuleName ~ VCopier.InputModules(1).Name

Name ResetSettings

Type Method
Format .ResetSettings()
Description The ResetSettings method returns the settings of the module

back to its original state when the VC first called it. A user
can change the settings of a module when it is configured.
This method is used to role back changes made bu a user
during the VC session. To save the settings between
sessions, use the SaveSettingsAsDefult method.

Sample ModuleName ~ VCopier.InputModules(1).ResetSettings()

Name SaveSettingsAsDefault

Type Method
Format .SaveSettingsAsDefault()
Description The SaveSettingsAsDefault method save any changes to the

settingst the user has done during this session to disk so
that they become the new settings.

Sample ModuleName ~ VCopier.InputModules(1).ResetSettings()

Name Unload

Type Method
Format .Unload()
Description The Unload method manually unloads the module from

memory. Once a module is loaded in VC it remains in
memory until it is specifically unloaded using the
Unload method, or the program exits.

Sample ModuleName ~ VCopier.InputModules(1).Unload()

The Program Object maintains the currently selected
Input, Output, and Process Modules. It is generally set by the
Client Module based on input from a user. However, in appli
cations that do not have a user interface the program object
can be used to directly set the modules to run VC. The Pro
gram Object has the following structure illustrated in FIG. 37.

All elements of the Program Object are defined in the
Modules Object section. The VDocument Object maintains
information about the current document being copied. The
VDocument represents a virtual document rather than a
physical one. It is designed to allow the flexible management
of multi-image files that together constitute an document. The
internal VDocument maps to physical files as illustrated in
FIG. 38.

The VDocument Object calculates the total number of
pages of all the files associated with it, and lays out each page
of each document in a single virtual document. As the figure
illustrates, if 4 files contain a total of 8 pages, then VDocu
ment considers this an 8 page document. If the 6'h page is
requested, VDocument will return the second page of File C
in the above figure. This enables VDocument to handle single
page files that together constitute a document (as is the case

10

15

20

25

30

35

40

45

50

55

60

Name

Type
Format
Description

Sample

Name

Type
Format
Description

Sample

Name

Type
Format
Description

Sample

Name

76

Add

Method
.Add(BSTR File, Long Page)
The Add method is used to add a page to the VPages
collection. The two arguments File and Page represent the
disk file and the page number to associate with the new
page in VPages. One page of one file is added at a time
using this method.
VDocument.Add(FileA, 2)

Auto Delete

Property, Boolean
.Auto Delete
The Auto Delete property lets the Server Module know
whether to delete the files once the virtual copy operation is
completed. When set to True the Server Module will delete
the physical disk files maintained in V document either
before the next virtual copy operation, or when VC is
shut down. When set to False Vdocument is cleared of its
contents between virtual copy operations, but the actual
files are not deleted from the disk. In general if the
VDocument object points to existing files then Auto Delete
should be set to False. If the VDocument object points to
temporary files, then Auto Delete should be set to True
so that the disk files are cleaned up (i.e. deleted) by the
Server Module. By default AutoDelete is set to False.
VCopier.VDocument.AutoDelete ~ True

Clear

Method
.Clear()
The Clear method is used to empty the contents of the
Vdocument object. The VPages object is emptied and the
reference to files are deleted in conformance with the
Auto Delete property.
VDocumentClear()

File

Type Property, BSTR
Format .File
Description The File property of the VPage object points to the disk file

Sample

Name

Type
Format
Description

Sample

Name

Type
Format
Description

Sample

Name

Type
Format
Description

that contains the image associated with the VPage page.
My File~ VDocument.VPages(2).File

Page

Property, Long
.Page
The Page property of the VPage object points to the image
offset into the disk file that contains the image associated
with the VPage page.
My Page~ VDocument.VPages(2).Page

Remove

Method
.Remove()
The Remove method is used to remove a page from the
VPages collection. The single argument Index is the
offset page into the VPages collection.
VDocumentVPages(2).Remove()

Vpage

Object
.Vpage
Each VPage object represents a single virtual page in the
VDocument object. Each VPage object contains the name
of the file that contains its virtual page in the

with many of the new digital copiers), or a single multi-page 65 Sample

image file, or any combination of the two. The VDocument

.File property, and a .Page property which is the page
offset in the image file.
My Page~ VCopier.VPages(2)

Object is illustrated in FIG. 39 and below.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 84 of 92

US 7,477,410 Bl
77

-continued

Name Vpages

Type Collection of Page objects
Format .Vpages
Description The VPages collection contains one VPage object per

virtnal page. Each page of each image file that is tracked by
VDocument is considered a unique page, and its

information is maintained by a VPage object.
Sample My Page ~ VCopier.VPages(2)

The Server Module supports simple methods that accom

78

-continued

Description The ErrorCode argument of the Error event identifies the
actual error code. There are no predefined error codes for
all modules. Each module produces its own set of error
codes.

Sample

Name

10 Type
Format
Description

Error Text

Argnment, BSTR
.ErrorText
The ErrorText argnment of the Error event identifies the
actual error text. There are no predefined error texts for
all modules. Each module produces its own text for its
error codes.

plish the basic copier functionality of go, cancel, and reset.
15

Sample

The Server Modules has the following structure: -----------------------

Name Cancel

Type Method
Format .Cancel()
Description The Cancel method is used to cancel the currently running

virtnal copy operation. The Cancel method can only be used
once the Go method is called and prior to its completion.

Sample VCopier.Cancel()

Name Go

Type Method
Format .Go()
Description The Go method is used to initiate a virtual copy operation.

It calls the modules in the following sequence:
Program.InputModule, Program.ProcessModules, and then
Program.OutputModule. The virtual copy operation can be
cancelled prior to its completion by calling the
Cancel method.

Sample VCopier.Go()

Name Reset

Type Method
Format .Reset()
Description The Reset method is used to clear the contents of the

Program object. After calling the Reset method VC is
considered to have no assigned Input and Output modules
selected. The modules that are reset are not unloaded from
memory.

Sample VCopier.Reset()

The are two events that the Server Module supports: Error
and Status. The Error event is generated anytime any of the
Modules produce an error condition. The Status event is
generated when information needs to be transferred between
the lOP or Server Modules and the Client Module.

The following are details for each event, illustrated m
FIGS. 40 and 41 and below.

Name Error

Type Event
Format .Error(...)
Description The Error event is triggered whenever there is an error

by one of the modules. The error can be trapped and
displayed or processed by the Client Module.

Sample

Name

Type
Format

ErrorCode

Argnment, Long
.ErrorCode

Name

Type
Format

Module!D

Argnment, BSTR
.Module!D

20
Description The Module!D argnment of the Error event identifies the

source of the error condition. The ModuleiD is defined
as the version-dependent Prog!D.

Sample

Name

25 Type
Format
Description

30

Sample

Name

35
Type
Format
Description

40
Sample

Name

Type

Severity

Argnment, Long
.Severity
The Severity argument of the Error event identifies the level
of error condition. The following levels are currently
implemented:
1- Severe
2- Warning

SubModule!D

Argnment, BSTR
.SubModule!D
The SubModuleiD argument of the Error event identifies
the secondary source of the error condition. The
SubModuleiD can defined as the version-dependent
Prog!D, or any other value determined by the
Module that generates the error condition.

URL

45 Format
Description

Argnment, BSTR
.URL
The URL argnment of the Error event identifies the URL
address (web site, HTML file, or resource file URL), that
contains the HTML representation of the error condition.
The information presented can be more dynamic as well as
formatted than the ErrorText argnment.

50 Sample

Name

Type
Format

Info!, Info2

Argument, Variant
.Info!, .Info2

55 Description The Info! and Info2 arguments of the Status event are
placeholders for additional information that needs to be
supplied with specific status numbers.

60

Sample

Name Status

Type Evenet
Format .Status(...)
Description The Status event is triggered by any ofthe modules when

there is information that needs to be relayed to the user or
the Client Module.

65 Sample

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 85 of 92

US 7,477,410 Bl
79

-continued

Name StatusNumber

Type Argument, Long
Format .StatusNumber
Description The StatusNumber argument of the Status event identifies

the actual status code. The values between 1 and 1000 are
private and cannot be generated by an lOP Module for
private use. Any other status numbers are open for
private lOP Module use.

Sample

Name StatusText

Type Argument, BSTR
Format .StatusText
Description The StatusText argument of the Status event identifies the

actual status text.
Sample

Name StatusType

Type Argument, BSTR
Format .StatusType
Description The Status Type argument of the Status event identifies the

type of status.

Sample

1 - Informational
2 - Instruction

The Server Module broadcasts the Status event to the Cli
ent Module. There are standard status events that the Server
Module generates which the Client Module can rely on.
These are the events that manage the flow of modules and user
interaction with the Server Module. The following is a gen
eral workflow of the events that are generated is illustrated in
FIG. 42.

The Server Module generates the following Status events:

StatusNumber StatusText

V seModuleCanceled

Description

The lOP Module canceled
the operation by setting
the Cancel argument in the
Feedback.Error or
Feedback. Status methods
to True

VseModuleConfigureEnd The lOP Module has
completed presenting its
configuration dialog

VseModuleConfigureStart The lOP Module has
started presenting
its configuration dialog

VseModuleGoEnd The lOP Module has
ended executing

VseModuleGoStart The lOP Module has
started executing

VseModuleLoadEnd The lOP Module has
completed loading

VseModuleLoadStart The lOP Module has
started loading

VseModuleUnloadEnd The lOP Module has
completed unloading

VseModuleUnloadStart The lOP Module has
started unloading

V seProgramCanceled The Server Module has
canceled executing
(using the .Cancel method)

V seProgramEnd The Server Module has
ended executing

V seProgramStart The Server Module has
started executing
a Go operation

80
The Client Module presents to the user information regard

ing the copy process, and initiates the virtual copy through the
Server Module. The Client Module can be a GUI that Imagi
nation Software develops, or a third-party application that
directly communicates with the Server Module. The goal of
the Client Module is to capture sufficient information and
pass that information along to the Server Module in order to
initiate a single virtual copy.

The Client Module follows the following general logic
1 o flow illustrated in FIG. 43. The first step for the Client Module

is to determine that the Server Module exists, and to success
fully launch the Server Module. This is done using a standard
COM interface.

If the Client Module is a GUI then it can present icons and
15 the names of all the available Input, Output, and Process

Modules for the user to select. The Client Module does not
need to know any information about these modules. All
names and Prodld' s are available from the Server Module API
using the Modules Object.

20 If the user selects a new Input or Output module, the Client
Module updates the appropriate Program.InputModule, Pro
gram.OutputModule, or Program. Process Modules object
available on the Server Module.

At any time the Client Module can initiate the Go method
25 of the Server Module. This is a synchronous process--once

the Go method is initiated the only way to stop it is to call the
Cancel method. Only one Go method can be called at a time,
and it must run to completion before another one is called.

During the virtual copy, the Server Module will send back
30 Status and Error events that should be processed and dis

played (if there is a GUI) by the Client Module. The only
requirement for a Client Module is that it at least substantially
conforms to the interface described in the Server Module
section. The architecture described in this section, and its

35 associated sample source code, is designed to facilitate devel
opment of Client Modules by third parties. It should be used
as a guide for developing a Client Module-it is not the only
way a Client Module can be designed.

The internal architecture described below is generally
40 independent from the interface requirements for a Client

Module. The Client interface must be implemented regard
less of whether or not the Client is designed with the archi
tecture described in this section. The basic Client architecture
is illustrated in FIG. 44.

45 The Input, Process, and Output ("lOP") Modules extend
VC by enabling specialized hardware and software to interact
with VC. Each lOP Module understands the input, output, or
processing capabilities of a specific technology, as well as
how to communicate with the Server Module. In this way an

50 lOP Module can read or write images to and from any device
or software application while still being managed by the
Server Module. To the user ofVC, interacting with any device
or software application is the same.

The lOP Modules share a common API to facilitate com-
55 munication with each other, with the Server Module, as well

as with third-party programs. The interface is based on COM.
Both the Server Module as well as third-party applications
can communicate with the Input, Process, and Output Mod
ules using the specified COM interface. Additionally, third-

60 party vendors can create their own versions of the Input,
Process, and Output Modules as long as they conform to the
specified COM interface.

The following are the main functions of the Input, Process,
and Output ("lOP") Modules:

65 Respond to Server Module Go() Method-The Server
Module calls the other modules using a COM-based Go()
method. All necessary information regarding the virtual copy

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 86 of 92

US 7,477,410 Bl
81

operation is passed along using arguments of the Go()
method. The lOP module can then handle its internal opera
tion independent of any other module.

Generate Status & Error Feedback-The lOP module
should let the Server Module know its progress, error condi
tions, or any other useful process or userbased information.

Initiate Communication With the Server Module-The
lOP Module can at any time initiate communication with the
Server Module to provide new information. This enables the
lOP Module to pole the device or software application that it 10

is linked to, and convey that information back to the Server
Module.

82

-continued

Description The SaveSettingsAsDefault method save any changes to the
settings the user has done during this session to disk so
that they become the new settings.

Sample MylnputModule.ResetSettings()

The API for the Input, Process, and Output Modules are
deliberately made simple so that third-party vendors can cre
ate their own custom versions of these modules with relative
ease. The API, illustrated in FIG. 45, consists of the following
COM-based interface:

The Feedback object illustrated in FIGS. 46-47 is used to
communicate between the lOP and the Server Module. The
Feedback object supports two methods that are used like
events. The purpose of this mechanism is to limit the com
munication between the lOP and the Server Module to just
those objects presented to the lOP Module by the Server
Module through the Go method. In this way the lOP Module

15 is handed all the information it needs to execute its part of a
copy operation.

Go(VDocument, Feedback)-This is the single method
that initiates a module to complete its phase of the virtual
copy. The Go() method is called by the Server Module when
it is ready to execute the functionality of the module. The two
parameters are the VDocument object, which contains the
information about the current document being copied. The
module can update the VDocument with additional images,

The Feedback object contains two methods: Error and
Status. The Error event is used to respond back to the Server
Module all error conditions. The Status method is used to

20 communicate back to the Server Module all information
updates, such as progress.

The following are details for each of these methods:

as is typical of an Input Module, or simply read and process 25

the document, as is typical of an Output Module. The second
parameter is a Feedback object, which contains the two events
that the lOP module can generate back to the Server Module.

Name

Type
Format

Cancel

Argument, Boolean Reference
.Cancel

Name Configure

Type Method
Format .Confignre()
Description The Confignre method causes the module to prompt the

user for configuration information. Each module maintains
its own configuration dialog, and therefore may look
different than other modules.

Sample MylnputModule.Configure()

Name Go

Type Method
Format .Go(Vdocument, Feedback)
Description The Go method is called by the Server Module to initiate

the lOP module to execute its part of the virtual copy
operation. The Vdocument Object is passed along as an
argnment so that the lOP module can add to or read the
current document that is being processed. Refer to the
Server Module section for a complete description of
the VDocument object.
The second parameter ofthe Go method is a Feedback
object. The Feedback object enables the lOP module to
send status and error updates back to the Server Module.
These events are also described in the Server Module
section.

Sample IOP.Go(VDocument, Feedback)

Name ResetSettings

Type Method
Format .ResetSettings()
Description The ResetSettings method returns the settings of the module

back to its original state when it was first called. A user
can change the settings of a module when it is configured.
This method is used to role back changes made by a user
during the VC session. To save the settings between
sessions, use the SaveSettingsAsDeafult method.

Sample MylnputModule.ResetSettings()

Name SaveSettingsAsDefault

Type Method
Format .SaveSettingsAsDefault()

Description The Cancel argument of the Error method is used to
30 establish whether the Server Module will continue with

the virtual copy operation once this lOP is completed.
If set to True then the Server Module will not continue its
cirtual copy operation. The Server Module will wait until
the lOP Module returns on its own. The Server Module
does not shut down the lOP Module.

35 Sample

Name Error

Type Method
Format .Error(...)

40
Description The Error event is triggered whenever there is an error by

one of the modules. The error can be trapped and displayed
or processed by the Client Module.

Sample

Name ErrorCode

45 Type Argnment, Long
Format .ErrorCode
Description The ErrorCode argument of the Error event identifies the

actual error code. There are no predefined error codes for
all modules. Each module produces its own set of error
codes.

50 Sample

Name Error Text

Type Argnment, BSTR
Format .ErrorText

55 Description The ErrorText argnment of the Error event identifies the
actual error text. There are no predefined error texts for all
modules. Each module produces its own text for its error
codes.

Sample

60
Name Severity

Type Argnment, Long
Format .Severity
Description The Severity argument of the Error event identifies the level

of error condition. The following levels are currently
implemented:

65 1- Severe
2- Warning

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 87 of 92

US 7,477,410 Bl
83

-continued

Sample

Name SubModule!D

Type Argument, BSTR
Format .SubModule!D
Description The SubModule!D argument of the Error event identifies

the secondary source of the error condition. The
SubModule!D can defined as the version-dependent
Prog!D, or any other value determined by the Module
that generates the error condition.

Sample

Name URL

Type Argument, BSTR
Format .URL
Description The URL argument of the Error event identifies the URL

address (web site, HTML file, or resource file URL),

Sample

that contains the HTML representation of the error
condition. The information presented can be more dynamic
as well as formatted than the ErrorText argument.

Name StatusText

Type
Format
Description

Sample

Name

Type
Format
Description

Sample

Argument, BSTR
.Status Text
The StatusText argument of the Status event identifies the
actual status text.

Status Type

Argument, BSTR
.StatusType
The Status Type argument of the Status event identifies the
type of status.
1 - Informational
2 - Instruction

The only requirement for an lOP Module is that it substan
tially conforms to the interface described earlier. The archi
tecture described in this section, and its associated sample
source code, is designed to facilitate development of lOP
Modules by third parties. It should be used as a guide for
developing an lOP Module-it is not the only way an lOP
Module can be designed.

The internal architecture described below is independent
from the interface requirements for an I 0 P. The I 0 P interface
must be implemented regardless of whether or not the lOP is
designed with the architecture described in this section. The
basic lOP architecture is illustrated in FIG. 48.

84
ated with the exact API specified earlier. Additionally, the
Interface class should maintain the Feedback object passed in
by the Server Module's Go method. This way all communi
cation to the Feedback object will be handled by the Interface
class, rather than by the Execute or Configuration classes.

The primary purpose of the Execute class is to execute the
Go method when it is called by the Server Module. This is the
core functionality of the lOP Module. Each lOP Module will
have its own mechanism for executing its part of a virtual

10 copy operation.
Any configuration information is assumed to have been

passed to the Execute class by the time it is being called. Since
the Execute class does not directly communicate with the
Configuration class, any information that needs to be shared

15 between the two classes must be coordinated by the Interface
class.

The Configuration class maintains all the configuration
data necessary for the lOP Module to operate. This includes
responding to the Server Module to:

20 Prompt the user with a Configuration dialog

25

Save the current configuration information to persistent
storage

Restoring the last saved configuration information from
persistent storage

Since the lOP Module is entirely responsible for these
activities, any programming method that accomplishes these
tasks is legitimate.

The many features and advantages of the invention are
apparent from the detailed specification, and thus, it is

30 intended by the appended claims to cover all such features
and advantages of the invention which fall within the true
spirit and scope of the invention. Further, since numerous
modifications and variations will readily occur to those
skilled in the art, it is not desired to limit the invention to the

35 exact construction and operation illustrated and described,
and accordingly, all suitable modifications and equivalents
may be resorted to, falling within the scope of the invention.

For example, while the above discussion has separated the
various functions into separate layers of functionality, the

40 layers may be combined, physically and/or logically, and
various functions may be combined together. While combin
ing various functions into same or common layers may make
implementation details more cumbersome, nevertheless, the
functions described herein may still be accomplished to

45 advantageously provide some or all of the benefits of the
invention described herein.

Further, as indicated herein, the present invention may be

The lOP Module has a fixed set of features that it needs to 50

used to automate and/or manually expedite the migration of a
program specific Application Programmer Interface from an
original state into a generic interface by building an object for
each engine. The object advantageously provides substan-perform:

Interface with the Server Module
Execute its operation when its Go() method is called
Respond to requests by the Server Module to configure its

settings
Although any I 0 P Module that meets the I 0 P API require

ments specified earlier will function properly, the proposed
architecture simplifies the development ofiOP Modules and
ensures greater flexibility.

The internal Interface class has two purposes:
Communicate with the Server Module
Marshall requests to, from, and between the Execute and

Configuration classes

tially uniform access to the engine and engine settings asso
ciated with the engine. The present invention May be applied
across a broad range of programming languages that utilize

55 similar concepts as described herein.
What is claimed is:
1. A computer data management system including at least

one of an electronic image, graphics and document manage
ment system capable of transmitting at least one of an elec-

60 tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications responsively connectable at
least one of locally and via the Internet, comprising:

In order to communication with the Server Module the 65

Interface class must support the COM protocol. All modules
within VC communicate via COM. This class should be ere-

at least one memory storing a plurality of interface proto
cols for interfacing and communicating;

at least one processor responsively connectable to said at
least one memory, and implementing the plurality of

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 88 of 92

US 7,477,410 Bl
85

interface protocols as a software application for inter
facing and connnunicating with the plurality of external
destinations including the one or more of the external
devices and applications,

wherein the computer data management system includes
the capability to integrate an image using software so
that the image gets seamlessly replicated and transmit
ted to at least one of other devices and applications, and
via the Internet.

86
9. A computer data management system according to claim

8, wherein the computer data management system is imple
mented as a service.

10. A computer data management system according to
claim 8, wherein the computer data management system
includes the capability of initiating, canceling, and resetting;
and wherein the computer data management system includes
the capability of maintaining a registry containing a list of
inputs, outputs, and processes that can be used in said com-

2. A computer data management system according to claim
1, wherein the computer data management system is imple
mented as a service.

10 puter data management system, and maintaining information
regarding files.

3. A computer data management system according to claim
1, wherein the computer data management system includes
the capability of initiating, canceling, and resetting; and 15

wherein the computer data management system includes the
capability of maintaining a registry containing a list of inputs,
outputs, and processes that can be used in said computer data
management system, and maintaining information regarding
files. 20

4. A computer data management system according to claim
1, wherein the computer data management system includes at
least one application progrannner interface (API).

5. A computer data management system according to claim
25

4, wherein the at least one application programmer interface
(API) comprises at last one of the following interfaces:

at least one modules object maintaining a first list of avail
able input, output, and process modules;

at least one program object maintaining a second list of 30
currently selected input, output, and process modules;

at least one document object maintaining information
regarding a current document being copied;

at least one system management method object used to
initiate, cancel, and reset said computer data manage- 35

ment system;
at least one system management event object used to pro

vide feedback to the Client Module.

11. A computer data management system according to
claim 8, wherein the computer data management system
includes at least one application progrmer interface (API).

12. A computer data management system according to
claim 11, wherein the at least one application progrannner
interface (API) comprises at last one of the following inter
faces:

at least one modules object maintaining a first list of avail
able input, output, and process modules;

at least one program object maintaining a second list of
currently selected input, output, and process modules;

at least one document object maintaining information
regarding a current document being copied;

at least one system management method object used to
initiate, cancel, and reset said computer data manage
ment system;

at least one system management event object used to pro
vide feedback to the Client Module.

13. A computer data management system according to
claim 8, wherein the computer data management system
includes at least one interface to interface with at least one of
a plurality of external devices and a plurality of external
applications.

14. A computer data management system according to
claim 8, where the computer data management system is
capable of at least one of linking and connnunicating with a
plurality of applications to enable a user to process files and

6. A computer data management system according to claim
1, wherein the computer data management system includes at
least one interface to interface with at least one of a plurality

40
electronic images.

15. A computer data management system including at least
one of an electronic image, graphics and document manage
ment system capable of transmitting at least one of an elec
tronic image, electronic graphics and electronic document to

of external devices and a plurality of external applications.
7. A computer data management system according to claim

1, where the computer data management system is capable of
at least one oflinking and connnunicating with a plurality of
applications to enable a user to process files and electronic
images.

45
a plurality of external destinations including one or more of
external devices and applications responsively connectable at
least one of locally and via the Internet, comprising:

8. A computer data management system including at least
one of an electronic image, graphics and document manage-

50
ment system capable of transmitting at least one of an elec
tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications responsively connectable at
least one of locally and via the Internet, comprising:

at least one memory storing a plurality of interface proto
cols for interfacing and connnunicating;

55

at least one memory storing a plurality of interface proto
cols for interfacing and connnunicating;

at least one processor responsively connectable to said at
least one memory, and implementing the plurality of
interface protocols as a software application for inter
facing and communicating with the plurality of external
destinations including the one or more of the external
devices and applications,

wherein the computer data management system includes
an interface that enables copying images between physi
cal devices, applications, and the Internet using a single
"GO" operation.

16. A computer data management system according to
claim 15, wherein the computer data management system is
implemented as a service.

at least one processor responsively connectable to said at
least one memory, and implementing the plurality of
interface protocols as a software application for inter- 60
facing and connnunicating with the plurality of external
destinations including the one or more of the external
devices and applications, 17. A computer data management system according to

claim 15, wherein the computer data management system
65 includes the capability of initiating, canceling, and resetting;

and wherein the computer data management system includes
the capability of maintaining a registry containing a list of

wherein the computer data management system includes
the capability to integrate the electronic images into a
destination application without the need to modify the
destination application.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 89 of 92

US 7,477,410 Bl
87

inputs, outputs, and processes that can be used in said com
puter data management system, and maintaining information
regarding files.

18. A computer data management system according to
claim 15, wherein the computer data management system
includes at least one application programmer interface (API).

19. A computer data management system according to
claim 18, wherein the at least one application programmer
interface (API) comprises at last one of the following inter
faces:

at least one modules object maintaining a first list of avail
able input, output, and process modules;

at least one program object maintaining a second list of
currently selected input, output, and process modules;

at least one document object maintaining information
regarding a current document being copied;

10

15

88
26. A computer data management system according to

claim 25, wherein the at least one application programmer
interface (API) comprises at last one of the following inter
faces:

at least one modules object maintaining a first list of avail
able input, output, and process modules;

at least one program object maintaining a second list of
currently selected input, output, and process modules;

at least one document object maintaining information
regarding a current document being copied;

at least one system management method object used to
initiate, cancel, and reset said computer data manage
ment system;

at least one system management event object used to pro
vide feedback to the Client Module.

27. A computer data management system according to
claim 22, wherein the computer data management system
includes at least one interface to interface with at least one of
a plurality of external devices and a plurality of external

at least one system management method object used to
initiate, cancel, and reset said computer data manage
ment system; 20 applications.

at least one system management event object used to pro
vide feedback to the Client Module.

20. A computer data management system according to
claim 15, wherein the computer data management system
includes at least one interface to interface with at least one of 25

a plurality of external devices and a plurality of external
applications.

28. A computer data management system according to
claim 22, where the computer data management system is
capable of at least one of linking and communicating with a
plurality of applications to enable a user to process files and
electronic images.

21. A computer data management system according to
claim 15, where the computer data management system is
capable of at least one of linking and communicating with a
plurality of applications to enable a user to process files and
electronic images.

29. A computer data management system including at least
one of an electronic image, graphics and document manage
ment system capable of transmitting at least one of an elec
tronic image, electronic graphics and electronic document to

30 a plurality of external destinations including one or more of
external devices and applications responsively connectable at
least one of locally and via the Internet, comprising:

22. A computer data management system including at least
one of an electronic image, graphics and document manage- 35
ment system capable of transmitting at least one of an elec
tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications responsively connectable at
least one of locally and via the Internet, comprising:

at least one memory storing a plurality of interface proto
cols for interfacing and communicating;

40

at least one processor responsively connectable to said at
least one memory, and implementing the plurality of
interface protocols as a software application for inter- 45

facing and communicating with the plurality of external
destinations including the one or more of the external
devices and applications,

wherein the computer data management system includes
the capability of adding at least one of electronic docu- 50

ment, data and paper processing with a single program
ming step.

23. A computer data management system according to
claim 22, wherein the computer data management system is

55
implemented as a service.

24. A computer data management system according to
claim 22, wherein the computer data management system
includes the capability of initiating, canceling, and resetting;
and wherein the computer data management system includes 60
the capability of maintaining a registry containing a list of
inputs, outputs, and processes that can be used in said com
puter data management system, and maintaining information
regarding files.

25. A computer data management system according to 65

claim 22, wherein the computer data management system
includes at least one application programmer interface (API).

at least one memory storing a plurality of interface proto
cols for interfacing and communicating;

at least one processor responsively connectable to said at
least one memory, and implementing the plurality of
interface protocols as a software application for inter
facing and communicating with the plurality of external
destinations including the one or more of the external
devices and applications,

wherein the software application comprises:
at least one input module managing data comprising at

least one of paper and electronic input to the computer
data management system, and managing at least one
imaging device to input the data through at least one of
a scanner and a digital copier, and managing the elec-
tronic input from at least one third-party software appli
cations;

at least one output module managing the data output from
the computer data management system, managing at
least one imaging device to output the data to at least one
of a standard Windows printer, an image printer, and a
digital copier, and managing the output of the data to the
third-party software application;

at least one process module applying at least one data
processing to the data comprising the at least one of the
paper and the electronic input as it is being copied,
applying additional functionality including at least one
of workflow and processing functionality to the data
comprising the at least one of paper and electronic input
as it is being copied, and applying multiple processes to
a single virtual copy;

at least one client module presenting the data comprising
the at least one of paper and electronic input as it is being
copied, and information related to at least one of the
input and output functions; and

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 90 of 92

US 7,477,410 Bl
89

at least one server module communicable with said at least
one input, output, client, and process modules and exter
nal applications, and capable of dynamically combining
the external applications with at least one of digital
capturing devices and digital imaging devices.

30. A computer data management system according to
claim 29, wherein the one or more of the external devices and
applications integrates the computer data management sys
tem into an external application via one of running the com
puter data management system, as an external service and 10

embedding the computer data management system as an
embedded service.

31. A computer data management system according to
claim 29, wherein the server module includes:

enable virtual copy operation means for initiating, cancel- 15

ing, and resetting said computer data management sys-
tern;

90
an interface comprising a software application that enables

copying images between physical devices, applications,
and the Internet using a single "GO" operation; and

a third application system of adding at least one of elec
tronic document and paper processing with a single pro
gramming step.

35. A computer data management system according to
claim 34, wherein the computer data management system is
implemented as a service.

36. A computer data management system according to
claim 34, wherein the computer data management system
includes the capability of initiating, canceling, and resetting;
and wherein the computer data management system includes
the capability of maintaining a registry containing a list of
inputs, outputs, and processes that can be used in said com
puter data management system, and maintaining information
regarding files.

maintain list of available module means for maintaining a
registry containing a list of said input, output, and pro
cess modules that can be used in said computer data
management system, said list being read on startup, and
maintaining another copy of said list in a modules object
accessible by said input, output, client, process and
server modules;

37. A computer data management system according to
claim 34, wherein the computer data management system

20 includes at least one application progrmer interface (API).

maintain currently active modules means for maintaining 25

said input, output, and process modules currently being
used for a current computer data management system
copy operation in a program object, and saving the cur
rently active modules in a process template file; and

maintain complete document information means for main- 30

taining information regarding a current file being cop
ied, and saving the information in a document template
file.

32. A computer data management system according to
claim 29, wherein the server module includes at least one 35

server module application progrmer interface (API).
33. A computer data management system according to

claim 32, wherein the at least one server module application
programmer interface (API) comprises the following COM-
based interfaces: 40

38. A computer data management system according to
claim 37, wherein the at least one application programmer
interface (API) comprises at last one of the following inter
faces:

at least one modules object maintaining a first list of avail
able input, output, and process modules;

at least one program object maintaining a second list of
currently selected input, output, and process modules;

at least one document object maintaining information
regarding a current document being copied;

at least one system management method object used to
initiate, cancel, and reset said computer data manage
ment system;

at least one system management event object used to pro
vide feedback to the Client Module.

39. A computer data management system according to
claim 34, wherein the computer data management system
includes at least one interface to interface with at least one of
a plurality of external devices and a plurality of external
applications.

at least one modules object maintaining a first list of avail
able input, output, and process modules;

at least one program object maintaining a second list of
currently selected input, output, and process modules;

at least one document object maintaining information
regarding a current document being copied;

40. A computer data management system according to
claim 34, where the computer data management system is
capable of at least one of linking and communicating with a

45
plurality of applications to enable a user to process files and
electronic images.

41. A computer data management method including at least
one of an electronic image, graphics and document manage
ment system capable of transmitting at least one of an elec-

at least one system management method object used to
initiate, cancel, and reset said computer data manage
ment system;

at least one system management event object used to pro
vide feedback to the Client Module.

50 tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications responsively connectable at
least one of locally and via the Internet, wherein the method 34. A computer data management system including at least

one of an electronic image, graphics and document manage
ment system capable of transmitting at least one of an elec- 55
tronic image, electronic graphics and electronic document to
a plurality of external destinations including one or more of
external devices and applications responsively connectable at
least one of locally and via the Internet, wherein the system
comprises:

a first application system to integrate an image using soft
ware so that the image gets seamlessly replicated into at
least one of other devices and applications, and via the
Internet;

60

a second application system to integrate electronic images 65

into existing applications without the need to modifY the
destination application;

comprises the steps of:
integrating an image using software so that the image gets

seamlessly replicated into at least one of other devices
and applications, and via the Internet;

integrating electronic images into existing applications
without the need to modifY the destination application;

interfacing via a software application enabling copying
images between physical devices, applications, and the
Internet using a single "GO" operation; and

adding at least one of electronic document and paper pro
cessing with a single programming step.

42. A computer data management method according to
claim 41, wherein the computer data management method is
implemented as a service.

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 91 of 92

US 7,477,410 Bl
91

43. A computer data management method according to
claim 41, wherein the computer data management method
includes the capability of initiating, canceling, and resetting;
and wherein the computer data management method includes
the capability of maintaining a registry containing a list of
inputs, outputs, and processes that can be used in said com
puter data management method, and maintaining information
regarding files.

92
at least one document object maintmmng information

regarding a current document being copied;
at least one system management method object used to

initiate, cancel, and reset said computer data manage
ment system;

at least one system management event object used to pro
vide feedback to the Client Module.

44. A computer data management method according to
claim 41, wherein the computer data management method 10

includes at least one application programmer interface (API).

46. A computer data management method according to
claim 41, wherein the computer data management method
includes at least one interface to interface with at least one of
a plurality of external devices and a plurality of external

45. A computer data management method according to
claim 44, wherein the at least one application programmer
interface (API) comprises at last one of the following inter
faces:

at least one modules object maintaining a first list of avail
able input, output, and process modules;

at least one program object maintaining a second list of
currently selected input, output, and process modules;

applications.
47. A computer data management method according to

claim 41, where the computer data management method is
15 capable of at least one of linking and communicating with a

plurality of applications to enable a user to process files and
electronic images.

* * * * *

Case 2:13-cv-00170-wks Document 18-2 Filed 09/18/13 Page 92 of 92

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

